Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 323, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725573

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.


Asunto(s)
Chenopodium quinoa , Metaboloma , Semillas , Chenopodium quinoa/química , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Sequías , Fitomejoramiento , Saponinas , Semillas/química , Semillas/metabolismo
2.
BMC Dermatol ; 20(1): 9, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993612

RESUMEN

BACKGROUND: The impact of Malassezia yeasts on skin mycobiome and health has received considerable attention recently. Pityriasis versicolor (PV), a common dermatosis caused by Malassezia genus worldwide, is a manifestation of dysbiosis. PV can be associated with hyper- and/or hypopigmented skin lesions. This disease entity is characterized by high percentage of relapses, which demands a proper antifungal therapy that is based on unambiguous species identification and drug susceptibility testing. CASE PRESENTATION: Comprehensive analysis of PV case in man presenting simultaneously hyper- and hypopigmented skin lesions was performed. Conventional and molecular diagnostic procedures revealed Malassezia furfur and Malassezia sympodialis, respectively as etiological agents of skin lesions observed. Susceptibility tests showed significantly lowered sensitivity of M. furfur cells to fluconazole. Based on susceptibility profiles local antifungal therapy with drugs characterized by entirely different mechanism of action was included. CONCLUSIONS: Our study indicates that cases of PV represented by two types of skin lesions in one patient may be associated with distinct Malassezia species. Moreover, as observed in this case, each of the isolated etiological agents of PV may differ significantly in susceptibility to antifungals. This can significantly complicate the treatment of dermatosis, which by definition is associated with a significant percentage of relapses. In the presented case localized topical treatment was sufficient and successful while allowing maintaining the physiological mycobiome.


Asunto(s)
Antifúngicos/uso terapéutico , Ciclopirox/administración & dosificación , Malassezia/aislamiento & purificación , Micobioma/efectos de los fármacos , Piel/microbiología , Terbinafina/administración & dosificación , Tiña Versicolor/tratamiento farmacológico , Administración Tópica , Antifúngicos/farmacología , Quimioterapia Combinada , Humanos , Masculino , Persona de Mediana Edad , Trastornos de la Pigmentación/etiología , Tiña Versicolor/complicaciones
3.
New Phytol ; 222(3): 1420-1433, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30664249

RESUMEN

Stress granules (SGs) are evolutionary conserved aggregates of proteins and untranslated mRNAs formed in response to stress. Despite their importance for stress adaptation, no complete proteome composition has been reported for plant SGs. In this study, we addressed the existing gap. Importantly, we also provide evidence for metabolite sequestration within the SGs. To isolate SGs we used Arabidopsis seedlings expressing green fluorescent protein (GFP) fusion of the SGs marker protein, Rbp47b, and an experimental protocol combining differential centrifugation with affinity purification (AP). SGs isolates were analysed using mass spectrometry-based proteomics and metabolomics. A quarter of the identified proteins constituted known or predicted SG components. Intriguingly, the remaining proteins were enriched in key enzymes and regulators, such as cyclin-dependent kinase A (CDKA), that mediate plant responses to stress. In addition to proteins, nucleotides, amino acids and phospholipids also accumulated in SGs. Taken together, our results indicated the presence of a preexisting SG protein interaction network; an evolutionary conservation of the proteins involved in SG assembly and dynamics; an important role for SGs in moderation of stress responses by selective storage of proteins and metabolites.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gránulos Citoplasmáticos/metabolismo , Metaboloma , Estrés Fisiológico , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/aislamiento & purificación , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteoma/metabolismo , Plantones/metabolismo
4.
Plant Physiol ; 177(1): 411-421, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29618637

RESUMEN

2',3'-cAMP is an intriguing small molecule that is conserved among different kingdoms. 2',3'-cAMP is presumably produced during RNA degradation, with increased cellular levels observed especially under stress conditions. Previously, we observed the presence of 2',3'-cAMP in Arabidopsis (Arabidopsis thaliana) protein complexes isolated from native lysate, suggesting that 2',3'-cAMP has potential protein partners in plants. Here, affinity purification experiments revealed that 2',3'-cAMP associates with the stress granule (SG) proteome. SGs are aggregates composed of protein and mRNA, which enable cells to selectively store mRNA for use in response to stress such as heat whereby translation initiation is impaired. Using size-exclusion chromatography and affinity purification analyses, we identified Rbp47b, the key component of SGs, as a potential interacting partner of 2',3'-cAMP. Furthermore, SG formation was promoted in 2',3'-cAMP-treated Arabidopsis seedlings, and interactions between 2',3'-cAMP and RNA-binding domains of Rbp47b, RRM2 and RRM3, were confirmed in vitro using microscale thermophoresis. Taken together, these results (1) describe novel small-molecule regulation of SG formation, (2) provide evidence for the biological role of 2',3'-cAMP, and (3) demonstrate an original biochemical pipeline for the identification of protein-metabolite interactors.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Estrés Fisiológico , Proteínas de Arabidopsis/química , Cromatografía de Afinidad , Modelos Biológicos , Proteínas de Unión a Poli(A)/química , Unión Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA