Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 202: 105912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879294

RESUMEN

Herbicide resistance is a worldwide concern for weed control. Cucumis melo L. var. agrestis Naud. (C. melo) is an annual trailing vine weed that is commonly controlled by nicosulfuron, acetolactate synthase (ALS)-inhibiting herbicides. However, long-term use of this herbicide has led to the emergence of resistance and several nicosulfuron resistant populations of C. melo have been found. Here we identified a resistant (R) C. melo population exhibiting 7.31-fold resistance to nicosulfuron compared with a reference sensitive (S) population. ALS gene sequencing of the target site revealed no amino acid substitution in R plants, and no difference in enzyme activity, as shown by ALS activity assays in vitro. ALS gene expression was not significantly different before and after the application of nicosulfuron. Pretreatment with the cytochrome P450 monooxygenase (P450) inhibitor malathion reduced nicosulfuron resistance in the R population. RNA-Seq transcriptome analysis was used to identify candidate genes that may confer metabolic resistance to nicosulfuron. We selected genes with annotations related to detoxification functions. A total of 20 candidate genes (7 P450 genes, 1 glutathione S-transferase (GST) gene, 2 ATP-binding cassette (ABC) transporters, and 10 glycosyltransferase (GT)) were identified; 12 of them (7 P450s, 1 GST, 2 ABC transporters, and 2 GTs) were demonstrated significantly differential expression between R and S by quantitative real-time RT-PCR (qRT-PCR). Our findings revealed that the resistance mechanism in C. melo was nontarget-site based. Our results also provide a valuable resource for studying the molecular mechanisms of weed resistance.


Asunto(s)
Acetolactato Sintasa , Cucumis melo , Resistencia a los Herbicidas , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Resistencia a los Herbicidas/genética , Compuestos de Sulfonilurea/farmacología , Herbicidas/farmacología , Herbicidas/toxicidad , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Cucumis melo/genética , Cucumis melo/efectos de los fármacos , Piridinas/farmacología , RNA-Seq , Perfilación de la Expresión Génica , Malatión/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 18(1): 202, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30231862

RESUMEN

BACKGROUND: Brassica napus (B. napus) encompasses diverse transcription factors (TFs), but thorough identification and characterization of TF families, as well as their transcriptional responsiveness to multifarious stresses are still not clear. RESULTS: Totally 2167 TFs belonging to five families were genome-widely identified in B. napus, including 518 BnAP2/EREBPs, 252 BnbZIPs, 721 BnMYBs, 398 BnNACs and 278 BnWRKYs, which contained some novel members in comparison with existing results. Sub-genome distributions of BnAP2/EREBPs and BnMYBs indicated that the two families might have suffered from duplication and divergence during evolution. Synteny analysis revealed strong co-linearity between B. napus and its two ancestors, although chromosomal rearrangements have occurred and 85 TFs were lost. About 7.6% and 9.4% TFs of the five families in B. napus were novel genes and conserved genes, which both showed preference on the C sub-genome. RNA-Seq revealed that more than 80% TFs were abiotic stress inducible and 315 crucial differentially expressed genes (DEGs) were screened out. Network analysis revealed that the 315 DEGs are highly co-expressed. The homologous gene network in A. thaliana revealed that a considerable amount of TFs could trigger the differential expression of targeted genes, resulting in a complex clustered network with clusters of genes responsible for targeted stress responsiveness. CONCLUSIONS: We identified and characterized five TF families in B. napus. Some crucial members and regulatory networks involved in different abiotic stresses have been explored. The investigations deepen our understanding of TFs for stress tolerance in B. napus.


Asunto(s)
Brassica napus/fisiología , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Brassica napus/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA