Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 159: 602-609, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27343867

RESUMEN

Amphiphilic magnetic composites were produced based on chrysotile mineral and carbon structures by chemical vapor deposition at different temperatures (600-900 °C) and cobalt as catalyst. The materials were characterized by elemental analysis, X-ray diffraction, vibrating sample magnetometry, adsorption and desorption of N2, Raman spectroscopy, scanning electronic microscopy, and thermal analysis showed an effective growth of carbon structures in all temperatures. It was observed that at 800 and 900 °C, a large amount of carbon structures are formed with fewer defects than at 600 and 700 °C, what contributes to their stability. In addition, the materials present magnetic phases that are important for their application as catalysts and adsorbents. The materials have shown to be very active to remove the oil dispersed in a real sample of emulsified wastewater from biodiesel production and to remove methylene blue by adsorption and oxidation via heterogeneous Fenton mechanism.


Asunto(s)
Asbestos Serpentinas/química , Carbono/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Adsorción , Catálisis , Azul de Metileno/química , Oxidación-Reducción , Espectrometría Raman , Propiedades de Superficie , Difracción de Rayos X
2.
J Nanosci Nanotechnol ; 12(3): 2661-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755105

RESUMEN

In this work, it is demonstrated how a novel technique based on temperature-programmed chemical vapor deposition (TPCVD) can be used to investigate the synthesis of carbon nanotubes (CNTs) from methane on a classic catalyst FeMo(x)/MgO (x = 0.07, 0.35 and 1.00). TPCVD monitors carbon deposition by measuring H2 formed during CH4 decomposition and affords information on the different catalytic species, deactivation process, reaction kinetics and carbon yields. The obtained results showed for FeMgO catalyst a simple TPCVD peak related to the production of carbon beginning at 760 degrees C with maximum at 800 degrees C followed by a rapid deactivation resulting in a low carbon yield. The addition of Mo to Fe/MgO catalyst completely changes the TPCVD profile with the formation of a new catalytic species active at temperatures higher than 900 degrees C, which is stable and continuously decomposes CH4 to produce high carbon yields. Raman, TG/DTG, Mössbauer, SEM, TEM, XRD and TPR analyses suggested that this active catalytic phase is likely related to Fe-Mo and Fe-Mo-C phases active to produce single wall and mainly multiwall carbon nanotubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA