Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Atten Percept Psychophys ; 85(1): 99-112, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36175763

RESUMEN

Symmetry perception studies have generally used two stimulus types: figural and dot patterns. Here, we designed a novel figural stimulus-a wedge pattern-made of centrally aligned pseudorandomly positioned wedges. To study the effect of pattern figurality and colour on symmetry perception, we compared symmetry detection in multicoloured wedge patterns with nonfigural dot patterns in younger and older adults. Symmetry signal was either segregated or nonsegregated by colour, and the symmetry detection task was performed under two conditions: with or without colour-based attention. In the first experiment, we compared performance for colour-symmetric patterns that varied in the number of wedges (24 vs. 36) and number of colours (2 vs. 3) and found that symmetry detection was facilitated by attention to colour when symmetry and noise signals were segregated by colour. In the second experiment, we compared performance for wedge and dot patterns on a sample of younger and older participants. Effects of attention to colour in segregated stimuli were magnified for wedge compared with dot patterns, with older and younger adults showing different effects of attention to colour on performance. Older adults significantly underperformed on uncued wedge patterns compared with dot patterns, but their performance improved greatly through colour cueing, reaching performance levels similar to young participants. Thus, while confirming the age-related decline in symmetry detection, we found that this deficit could be alleviated in figural multicoloured patterns by attending to the colour that carries the symmetry signal.


Asunto(s)
Señales (Psicología) , Ruido , Humanos , Anciano , Color , Envejecimiento , Reconocimiento Visual de Modelos
2.
Neuroimage ; 259: 119450, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798252

RESUMEN

Embodied theories of semantic cognition predict that brain regions involved in motion perception are engaged when people comprehend motion concepts expressed in language. Left lateral occipitotemporal cortex (LOTC) is implicated in both motion perception and motion concept processing but prior studies have produced mixed findings on which parts of this region are engaged by motion language. We scanned participants performing semantic judgements about sentences describing motion events and static events. We performed univariate analyses, multivariate pattern analyses (MVPA) and psychophysiological interaction (PPI) analyses to investigate the effect of motion on activity and connectivity in different parts of LOTC. In multivariate analyses that decoded whether a sentence described motion or not, the middle and posterior parts of LOTC showed above-chance level performance, with performance exceeding that of other brain regions. Univariate ROI analyses found the middle part of LOTC was more active for motion events than static ones. Finally, PPI analyses found that when processing motion events, the middle and posterior parts of LOTC (overlapping with motion perception regions), increased their connectivity with cognitive control regions. Taken together, these results indicate that the more posterior parts of LOTC, including motion perception cortex, respond differently to motion vs. static events. These findings are consistent with embodiment accounts of semantic processing, and suggest that understanding verbal descriptions of motion engages areas of the occipitotemporal cortex involved in perceiving motion.


Asunto(s)
Imagen por Resonancia Magnética , Lóbulo Occipital , Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiología , Semántica , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología
3.
Neuroimage ; 236: 118073, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33878380

RESUMEN

Multivariate neuroimaging studies indicate that the brain represents word and object concepts in a format that readily generalises across stimuli. Here we investigated whether this was true for neural representations of simple events described using sentences. Participants viewed sentences describing four events in different ways. Multivariate classifiers were trained to discriminate the four events using a subset of sentences, allowing us to test generalisation to novel sentences. We found that neural patterns in a left-lateralised network of frontal, temporal and parietal regions discriminated events in a way that generalised successfully over changes in the syntactic and lexical properties of the sentences used to describe them. In contrast, decoding in visual areas was sentence-specific and failed to generalise to novel sentences. In the reverse analysis, we tested for decoding of syntactic and lexical structure, independent of the event being described. Regions displaying this coding were limited and largely fell outside the canonical semantic network. Our results indicate that a distributed neural network represents the meaning of event sentences in a way that is robust to changes in their structure and form. They suggest that the semantic system disregards the surface properties of stimuli in order to represent their underlying conceptual significance.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Formación de Concepto/fisiología , Red Nerviosa/fisiología , Psicolingüística , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Semántica , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA