Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 12(10): 10419-10429, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30207690

RESUMEN

High-resolution neural interfaces are essential tools for studying and modulating neural circuits underlying brain function and disease. Because electrodes are miniaturized to achieve higher spatial resolution and channel count, maintaining low impedance and high signal quality becomes a significant challenge. Nanostructured materials can address this challenge because they combine high electrical conductivity with mechanical flexibility and can interact with biological systems on a molecular scale. Unfortunately, fabricating high-resolution neural interfaces from nanostructured materials is typically expensive and time-consuming and does not scale, which precludes translation beyond the benchtop. Two-dimensional (2D) Ti3C2 MXene possesses a combination of remarkably high volumetric capacitance, electrical conductivity, surface functionality, and processability in aqueous dispersions distinct among carbon-based nanomaterials. Here, we present a high-throughput microfabrication process for constructing Ti3C2 neuroelectronic devices and demonstrate their superior impedance and in vivo neural recording performance in comparison with standard metal microelectrodes. Specifically, when compared to gold microelectrodes of the same size, Ti3C2 electrodes exhibit a 4-fold reduction in interface impedance. Furthermore, intraoperative in vivo recordings from the brains of anesthetized rats at multiple spatial and temporal scales demonstrate that Ti3C2 electrodes exhibit lower baseline noise, higher signal-to-noise ratio, and reduced susceptibility to 60 Hz interference than gold electrodes. Finally, in neuronal biocompatibility studies, neurons cultured on Ti3C2 are as viable as those in control cultures, and they can adhere, grow axonal processes, and form functional networks. Overall, our results indicate that Ti3C2 MXene microelectrodes have the potential to become a powerful platform technology for high-resolution biological interfaces.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Nanoestructuras/química , Neuronas/metabolismo , Titanio/química , Animales , Materiales Biocompatibles/química , Supervivencia Celular , Células Cultivadas , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Conductividad Eléctrica , Estimulación Eléctrica , Electrodos , Redes Neurales de la Computación , Neuronas/citología , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie
2.
Adv Mater ; 30(32): e1801846, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29944178

RESUMEN

Nanocomposites containing 2D materials have attracted much attention due to their potential for enhancing electrical, magnetic, optical, mechanical, and thermal properties. However, it has been a challenge to integrate 2D materials into ceramic matrices due to interdiffusion and chemical reactions at high temperatures. A recently reported sintering technique, the cold sintering process (CSP), which densifies ceramics with the assistance of transient aqueous solutions, provides a means to circumvent the aforementioned problems. The efficacious co-sintering of Ti3 C2 Tx (MXene), a 2D transition carbide, with ZnO, an oxide matrix, is reported. Using CSP, the ZnO-Ti3 C2 Tx nanocomposites can be sintered to 92-98% of the theoretical density at 300 °C, while avoiding oxidation or interdiffusion and showing homogeneous distribution of the 2D materials along the ZnO grain boundaries. The electrical conductivity is improved by 1-2 orders of magnitude due to the addition of up to 5 wt% MXene. The hardness and elastic modulus show an increase of 40-50% with 0.5 wt% MXene, and over 150% with 5 wt% of MXene. The successful densification of ZnO-MXene nanocomposite demonstrates that the cold sintering of ceramics with 2D materials is a promising processing route for designing new nanocomposites with a diverse range of applications.

3.
ACS Nano ; 12(3): 2685-2694, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29463080

RESUMEN

Understanding the rheological properties of two-dimensional (2D) materials in suspension is critical for the development of various solution processing and manufacturing techniques. 2D carbides and nitrides (MXenes) constitute one of the largest families of 2D materials with >20 synthesized compositions and applications already ranging from energy storage to medicine to optoelectronics. However, in spite of a report on clay-like behavior, not much is known about their rheological response. In this study, rheological behavior of single- and multilayer Ti3C2T x in aqueous dispersions was investigated. Viscous and viscoelastic properties of MXene dispersions were studied over a variety of concentrations from colloidal dispersions to high loading slurries, showing that a multilayer MXene suspension with up to 70 wt % can exhibit flowability. Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties. Surprisingly, high viscosity was observed at very low concentrations for solutions of single-layer MXene flakes. Single-layer colloidal solutions were found to exhibit partial elasticity even at the lowest tested concentrations (<0.20 mg/mL) due to the presence of strong surface charge and excellent hydrophilicity of MXene, making them amenable to fabrication at dilute concentrations. Overall, the findings of this study provide fundamental insights into the rheological response of this quickly growing 2D family of materials in aqueous environments as well as offer guidelines for processing of MXenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA