RESUMEN
Gallium and indium octahedral complexes with isoniazid derivative ligands were successfully prepared. The ligands, isonicotinoyl benzoylacetone (H2L1) and 4-chlorobenzoylacetone isonicotinoyl hydrazone (H2L2), and their respective coordination compounds with gallium and indium [GaL1(HL1)] (GaL1), [GaL2(HL2)] (GaL2), [InL1(HL1)] (InL1) and [InL2(HL2)] (InL2) were investigated by NMR, ESI-MS, UV-Vis, IR, single-crystal X-ray diffraction and elemental analysis. In vitro interaction studies with human serum albumin (HSA) evidenced a moderate affinity of all complexes with HSA through spontaneous hydrophobic interactions. The greatest suppression of HSA fluorescence was caused by GaL2 and InL2, which was associated to the higher lipophilicity of H2L2. In vitro interaction studies with CT-DNA indicated weak interactions of the biomolecule with all complexes. Cytotoxicity assays with MCF-7 (breast carcinoma), PC-3 (prostate carcinoma) and RWPE-1 (healthy human prostate epithelial) cell lines showed that complexes with H2L2 are more active and selective against MCF-7, with the greatest cytotoxicity observed for InL2 (IC50 = 10.34 ± 1.69 µM). H2L1 and H2L2 were labelled with gallium-67, and it was verified that 67GaL2 has a greater lipophilicity than 67GaL1, as well as higher stability in human serum or in the presence of apo-transferrin. Cellular uptake assays with 67GaL1 and 67GaL2 evidenced that the H2L2-containing radiocomplex has a higher accumulation in MCF-7 and PC-3 cells than the non-halogenated congener 67GaL1. The anti-Mycobacterium tuberculosis assays revealed that both ligands and metal complexes are potent growth inhibitors, with MIC90 (µg mL-1) values observed from 0.419 ± 0.05 to 1.378 ± 0.21.
Asunto(s)
Antineoplásicos , Complejos de Coordinación , Galio , Mycobacterium tuberculosis , Neoplasias , Tuberculosis , Masculino , Humanos , Isoniazida/farmacología , Indio/farmacología , Galio/farmacología , Galio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/químicaRESUMEN
The synthesis of two new hexadentate potentially tetra-anionic acyclic chelators, an N2O4-donor bis(semicarbazone) (H4bsc) and an N2O2S2-donor bis(thiosemicarbazone) (H4btsc), is described. Coordination reactions of the ligands with gallium and indium precursors were investigated and yielded the complexes [Ga(Hbsc)] (1) and [In(Hbtsc)] (2), respectively. Ligands and complexes structures were confirmed by several techniques, including FTIR, NMR (1H, 13C, COSY, HSQC), ESI(+)-MS and single crystal X-ray diffraction analysis. The radioactive congeners [67Ga(Hbsc)] (1*) and [111In(Hbtsc)] (2*) were also synthesized and their radiolabeling yield and radiochemical purity were certified by HPLC and ITLC analyses. Biodistribution assays in groups of CD-1 mice showed a high uptake of both radiocomplexes in liver and intestine where 1* presented higher retention. In vitro and in vivo assays revealed higher stability of 1* compared with 2*, namely in the blood. The results suggest that radiocomplex 1* is a candidate for further investigation as it could be prepared in high yields (>95%), at low temperature (20-25 °C) and at fast reaction time (15 min), which are very desirable synthesis conditions for potential new radiopharmaceuticals.
RESUMEN
Bridge splitting reactions between [Pd(C2,N-dmba)(µ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.