Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Muscle Res Cell Motil ; 28(1): 39-47, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17436058

RESUMEN

The aim of this study was to evaluate the effect of repeated bouts of exercise on the cytoskeletal proteins titin, desmin, and dystrophin. Rats were made to run downhill for 90 min 1 or 5 times separated by 14 days. Samples were taken from quadriceps femoris muscle 3, 48, 96 h and 50 days after the last exercise session and detected by quantitative PCR, histochemical stainings, and western blot analyses. Histopathological changes in titin, desmin, and dystophin stainings, an increase in beta-glucuronidase activity (a quantitative indicator of muscle damage), a significant decrease in the relative content of dystrophin, and intramyocellular Evans blue staining (signs of changes in sarcolemmal permeability) observed after one exercise session were attenuated after 5 exercise sessions. Titin mRNA level was not increased after the initial exercise session but was increased after the fifth session. Desmin and dystrophin mRNA levels were increased after the first and fifth sessions with desmin showing a smaller increase after the fifth session compared to the first session. Prior exercise induces adaptation that protects the sarcolemma as well as subsarcolemmal, intermediate filament, and sarcomeric proteins against disruption. Changes in mRNA levels of titin, desmin, and dystophin after an acute exercise session obviously reflect the need of these proteins in the repair process following damage. After five sessions increase in mRNA of studied proteins suggest a strong involvement in continuing adaptation to the increased exercise.


Asunto(s)
Desmina/metabolismo , Distrofina/metabolismo , Glucuronidasa/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Proteínas Quinasas/metabolismo , Animales , Conectina , Desmina/genética , Desmina/aislamiento & purificación , Distrofina/genética , Distrofina/aislamiento & purificación , Masculino , Contracción Muscular , Fatiga Muscular , Proteínas Musculares/genética , Proteínas Musculares/aislamiento & purificación , Músculo Esquelético/citología , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
2.
Am J Physiol Endocrinol Metab ; 292(2): E533-42, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17003243

RESUMEN

In striated muscle, a sarcomeric noncontractile protein, titin, is proposed to form the backbone of the stress- and strain-sensing structures. We investigated the effects of diabetes, physical training, and their combination on the gene expression of proteins of putative titin stretch-sensing complexes in skeletal and cardiac muscle. Mice were divided into control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups performed for 1, 3, or 5 wk of endurance training on a motor-driven treadmill. Muscle samples from T and DT groups together with respective controls were collected 24 h after the last training session. Gene expression of calf muscles (soleus, gastrocnemius, and plantaris) and cardiac muscle were analyzed using microarray and quantitative PCR. Diabetes induced changes in mRNA expression of the proteins of titin stretch-sensing complexes in Z-disc (MLP, myostatin), I-band (CARP, Ankrd2), and M-line (titin kinase signaling). Training alleviated diabetes-induced changes in most affected mRNA levels in skeletal muscle but only one change in cardiac muscle. In conclusion, we showed diabetes-induced changes in mRNA levels of several fiber-type-biased proteins (MLP, myostatin, Ankrd2) in skeletal muscle. These results are consistent with previous observations of diabetes-induced atrophy leading to slower fiber type composition. The ability of exercise to alleviate diabetes-induced changes may indicate slower transition of fiber type.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Mecanotransducción Celular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Proteínas Quinasas/metabolismo , Animales , Glucemia/análisis , Peso Corporal , Citrato (si)-Sintasa/metabolismo , Conectina , Diabetes Mellitus Experimental/inducido químicamente , Proteínas con Dominio LIM , Masculino , Ratones , Ratones Endogámicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Ejercicios de Estiramiento Muscular , Miostatina , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo , Estreptozocina , Factor de Crecimiento Transformador beta/metabolismo
3.
FASEB J ; 20(9): 1570-2, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16816123

RESUMEN

Diabetes alters microvascular structure and function and is a major risk factor for cardiovascular diseases. In diabetic skeletal muscle, impaired angiogenesis and reduced VEGF-A expression have been observed, whereas in healthy muscle exercise is known to have opposite effects. We studied the effects of type 1 diabetes and combined exercise training on angiogenic mRNA expression and capillarization in mouse skeletal muscle. Microarray and real-time PCR analyses showed that diabetes altered the expression of several genes involved in angiogenesis. For example, levels of proangiogenic VEGF-A, VEGF-B, neuropilin-1, VEGFR-1, and VEGFR-2 were reduced and the levels of antiangiogenic thrombospondin-1 and retinoblastoma like-2 were increased. Exercise training alleviated some of these changes, but could not completely restore them. VEGF-A protein content was also reduced in diabetic muscles. In line with the reduced levels of VEGF-A and other angiogenic factors, and increased levels of angiogenesis inhibitors, capillary-to-muscle fiber ratio was lower in diabetic mice compared to healthy controls. Exercise training could not restore capillarization in diabetic mice. In conclusion, these data illustrate that type 1 diabetes is associated with reduced skeletal muscle capillarization and the dysregulation of complex angiogenesis pathways.


Asunto(s)
Capilares/fisiología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Regulación de la Expresión Génica , Músculo Esquelético/fisiopatología , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , Condicionamiento Físico Animal , Ribonucleasa Pancreática/fisiología , Inductores de la Angiogénesis , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos , Músculo Esquelético/irrigación sanguínea , Neovascularización Patológica/prevención & control
4.
Am J Physiol Endocrinol Metab ; 290(5): E900-7, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16352670

RESUMEN

Diabetes induces changes in the structure and function of the extracellular matrix (ECM) in many tissues. We investigated the effects of diabetes, physical training, and their combination on the gene expression of ECM proteins in skeletal muscle. Mice were divided to control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups (T, DT) performed 1, 3, or 5 wk of endurance training on a treadmill. Gene expression of calf muscles was analyzed using microarray and quantitative PCR. Training group samples were collected 24 h after the last training session. Diabetes affected the gene expression of several collagens (types I, III, IV, V, VI, and XV), some noncollagenous glycoproteins, and proteoglycans (e.g., elastin, thrombospondin-1, laminin-2, decorin). Reduced gene expression of collagens in diabetic skeletal muscle was partially attenuated as a result of physical training. In diabetes, mRNA expression of the basement membrane (BM) collagens decreased and that of noncollagenous glycoproteins increased. This may change the structure of the BM in a less collagenous direction and affect its properties.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Proteínas de la Matriz Extracelular/genética , Expresión Génica/genética , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Citrato (si)-Sintasa/metabolismo , Colágeno/genética , Factor de Crecimiento del Tejido Conjuntivo , Glicoproteínas/genética , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos , Músculo Esquelético/enzimología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteoglicanos/genética , Factor de Crecimiento Transformador beta/genética
5.
J Muscle Res Cell Motil ; 26(4-5): 259-73, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16322914

RESUMEN

This study was performed to examine effects of prolonged (3 h) intermittent shortening (amplitude 2 mm) contractions (muscles were excited maximally) of head III of rat extensor digitorum longus muscle (EDL III) on indices of muscle damage and on force transmission within the intact anterior crural compartment. Three hours after the EDL III exercise, muscle fibre damage, as assessed by immunohistochemical staining of structural proteins (i.e. dystrophin, desmin, titin, laminin-2), was found in EDL, tibialis anterior (TA) and extensor hallucis longus (EHL) muscles. The damaged muscle fibres were not uniformly distributed throughout the muscle cross-sections, but were located predominantly near the interface of TA and EDL muscles as well as near intra- and extramuscular neurovascular tracts. In addition, changes were observed in desmin, muscle ankyrin repeat protein 1, and muscle LIM protein gene expression: significantly (P<0.01) higher (1.3, 45.5 and 2.3-fold, respectively) transcript levels compared to the contralateral muscles. Post-EDL III exercise, length-distal force characteristics of EDL III were altered significantly (P<0.05): at high EDL III lengths, active forces decreased and the length range between active slack length and optimum length increased. For all EDL III lengths tested, proximal passive and active force of EDL decreased. The slope of the EDL III length-TA+EHL force curve decreased, which indicates a decrease of the degree of intermuscular interaction between EDL III and TA+EHL. It is concluded that prolonged intermittent shortening contractions of a single head of multi-tendoned EDL muscle results in structural damage to muscle fibres as well as altered force transmission within the compartment. A possible role of myofascial force transmission is discussed.


Asunto(s)
Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiología , Tendones/fisiología , Animales , Desmina/genética , Perfilación de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Animales , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/inervación , Tamaño de los Órganos , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Mecánico , Factores de Tiempo , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA