Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 59(16): 7512-24, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27434274

RESUMEN

The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.


Asunto(s)
Péptidos/farmacología , Receptores CXCR4/agonistas , Relación Dosis-Respuesta a Droga , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
2.
ACS Med Chem Lett ; 2(8): 597-602, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21841963

RESUMEN

The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokine-receptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4.

3.
Synapse ; 65(4): 321-31, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20730801

RESUMEN

Most antipsychotic (AP) drugs are dopamine (DA) D2 receptor (DRD2) antagonists and remain the main pharmacological treatment of schizophrenia. Long-term AP use can give rise to tardive dyskinesia. It has been reported that chronic treatment with APs induces DRD2 upregulation and oxidative stress, which have been associated with tardive dyskinesia. We showed previously that H2O2-induced oxidative stress increased DRD2 expression in human SH-SY5Y neuroblastoma cells. We report here the effects of AP drugs on DRD2 expression levels in the same cell line and the effects of the inhibition of oxidative phenomena by (±)-α-lipoic acid treatment. Haloperidol, a first-generation AP, induced an increase in DRD2 protein and mRNA levels, whereas amisulpride, a second-generation AP, had no significant effect. (±)-α-Lipoic acid pretreatment reversed the haloperidol-induced DRD2 upregulation in mRNA and protein levels. Furthermore, haloperidol induced a larger increase of oxidative stress biomarkers (protein carbonylation, lipid peroxidation, and superoxide anion production) than amisulpride. (±)-α-Lipoic acid also attenuated AP-induced oxidative stress. Inhibition of catecholamine synthesis by α-methyl-DL-tyrosine (AMPT) increased DRD2 expression and prevented further increase by APs. Our results suggest that haloperidol-induced DRD2 upregulation is linked to oxidative stress and provide potential mechanisms by which (±)-α-lipoic acid can be considered as a therapeutic agent to prevent and treat side effects related to the use of first-generation APs.


Asunto(s)
Antipsicóticos/farmacología , Antagonistas de los Receptores de Dopamina D2 , Neuroblastoma/metabolismo , Receptores de Dopamina D2/biosíntesis , Ácido Tióctico/farmacología , Regulación hacia Arriba/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Neuroblastoma/patología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA