Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 65(2): 122-32, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19174191

RESUMEN

Compounds capable of stimulating soluble guanylate cyclase (sGC) activity might become important new tools to treat hypertension. While rational design of these drugs would be aided by elucidation of the sGC three-dimensional structure and molecular mechanism of activation, such efforts also require quantities of high quality enzyme that are challenging to produce. We implemented the titerless infected-cells preservation and scale-up (TIPS) methodology to express the heterodimeric sGC. In the TIPS method, small-scale insect cell cultures were first incubated with a recombinant baculovirus which replicated in the cells. The baculovirus-infected insect cells (BIIC) were harvested and frozen prior to cell lysis and the subsequent escape of the newly replicated virus into the culture supernatant. Thawed BIIC stocks were ultimately used for subsequent scale up. As little as 1 mL of BIIC was needed to infect a 100-L insect cell culture, in contrast to the usual 1L of high-titer, virus stock supernatants. The TIPS method eliminates the need and protracted time for titering virus supernatants, and provides stable, concentrated storage of recombinant baculovirus in the form of infected cells. The latter is particularly advantageous for virus stocks which are unstable, such as those for sGC, and provides a highly efficient alternative for baculovirus storage and expression. The TIPS process enabled efficient scale up to 100-L batches, each producing about 200mg of active sGC. Careful adjustment of expression culture conditions over the course of several 100-L runs provided uniform starting titers, specific activity, and composition of contaminating proteins that facilitated development of a process that reproducibly yielded highly active, purified sGC.


Asunto(s)
Baculoviridae/genética , Guanilato Ciclasa/biosíntesis , Receptores Citoplasmáticos y Nucleares/biosíntesis , Spodoptera/citología , Spodoptera/metabolismo , Animales , Baculoviridae/fisiología , Western Blotting , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Humanos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Guanilil Ciclasa Soluble , Spodoptera/virología , Factores de Tiempo
2.
Structure ; 11(9): 1071-85, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12962626

RESUMEN

Sorbitol dehydrogenase (hSDH) and aldose reductase form the polyol pathway that interconverts glucose and fructose. Redox changes from overproduction of the coenzyme NADH by SDH may play a role in diabetes-induced dysfunction in sensitive tissues, making SDH a therapeutic target for diabetic complications. We have purified and determined the crystal structures of human SDH alone, SDH with NAD(+), and SDH with NADH and an inhibitor that is competitive with fructose. hSDH is a tetramer of identical, catalytically active subunits. In the apo and NAD(+) complex, the catalytic zinc is coordinated by His69, Cys44, Glu70, and a water molecule. The inhibitor coordinates the zinc through an oxygen and a nitrogen atom with the concomitant dissociation of Glu70. The inhibitor forms hydrophobic interactions to NADH and likely sterically occludes substrate binding. The structure of the inhibitor complex provides a framework for developing more potent inhibitors of hSDH.


Asunto(s)
Cristalografía por Rayos X , L-Iditol 2-Deshidrogenasa/química , Sitios de Unión , Humanos , Cinética , L-Iditol 2-Deshidrogenasa/metabolismo , Funciones de Verosimilitud , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA