Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immunity ; 38(6): 1271-84, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23791644

RESUMEN

Naive CD4⁺ T cells can differentiate into specific helper and regulatory T cell lineages in order to combat infection and disease. The correct response to cytokines and a controlled balance of these populations is critical for the immune system and the avoidance of autoimmune disorders. To investigate how early cell-fate commitment is regulated, we generated the first human genome-wide maps of histone modifications that reveal enhancer elements after 72 hr of in vitro polarization toward T helper 1 (Th1) and T helper 2 (Th2) cell lineages. Our analysis indicated that even at this very early time point, cell-specific gene regulation and enhancers were at work directing lineage commitment. Further examination of lineage-specific enhancers identified transcription factors (TFs) with known and unknown T cell roles as putative drivers of lineage-specific gene expression. Lastly, an integrative analysis of immunopathogenic-associated SNPs suggests a role for distal regulatory elements in disease etiology.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Enfermedades del Sistema Inmune/inmunología , Células TH1/inmunología , Células Th2/inmunología , Diferenciación Celular/genética , Linaje de la Célula/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Histonas/genética , Humanos , Enfermedades del Sistema Inmune/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Balance Th1 - Th2
2.
J Biol Chem ; 287(35): 29273-84, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778266

RESUMEN

Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin that includes four-and-a-half LIM domain protein-1 (Fhl1) and components of the mitogen-activated protein signaling cascade, which impacted muscle compliance in Fhl1 knock-out cardiac muscle. However, direct regulation of these molecular components in mediating titin N2B function remained unresolved. Here we identify Fhl1 as a novel negative regulator of titin N2B levels and phosphorylation-mediated mechanics. We specifically identify titin N2B as a novel substrate of extracellular signal regulated-kinase-2 (Erk2) and demonstrate that Fhl1 directly interferes with Erk2-mediated titin-N2B phosphorylation. We highlight the critical region in titin-N2B that interacts with Fhl1 and residues that are dependent on Erk2-mediated phosphorylation in situ. We also propose a potential mechanism for a known titin-N2B cardiomyopathy-causing mutation that involves this regulatory complex. These studies shed light on a novel mechanism regulating titin-N2B mechano-signaling as well as suggest that dysfunction of these pathways could be important in cardiac disease states affecting muscle compliance.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Mecanotransducción Celular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Conectina , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteínas Musculares/genética , Mutación , Miocardio/patología , Fosforilación , Proteínas Quinasas/genética , Estructura Terciaria de Proteína
3.
Cell Res ; 21(10): 1393-409, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21876557

RESUMEN

Pluripotency, the ability of a cell to differentiate and give rise to all embryonic lineages, defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes, accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells, as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency, we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation, except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression, suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers, and observed much greater dynamics in chromatin modifications, especially H3K4me1 and H3K27ac, which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Epigénesis Genética/fisiología , Células Madre Pluripotentes/metabolismo , Transcripción Genética/fisiología , Línea Celular , Linaje de la Célula/fisiología , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/citología , Elementos de Facilitación Genéticos/fisiología , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes/citología
4.
Cell Stem Cell ; 6(5): 479-91, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20452322

RESUMEN

Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.


Asunto(s)
Linaje de la Célula/genética , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma Humano/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Celular , Cromatina/genética , Islas de CpG/genética , Metilación de ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genes del Desarrollo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Secuencias Reguladoras de Ácidos Nucleicos/genética
5.
Nature ; 459(7243): 108-12, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19295514

RESUMEN

The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.


Asunto(s)
Fenómenos Fisiológicos Celulares , Regulación de la Expresión Génica , Histonas/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Línea Celular , Cromatina/genética , Genoma Humano/genética , Células HeLa , Humanos , Células K562 , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA