Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vaccine X ; 20: 100545, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221182

RESUMEN

The coronavirus disease 2019 (COVID-19) emerged as a major global health crisis, posing significant health, economic, and social challenges. Vaccine development has been a crucial response to the severe-acute-respiratory-syndrome-related coronavirus-2 pandemic owing to the critical role of immunization in controlling infectious diseases, leading to the expedited development of several effective vaccines. Although mRNA platform-based COVID-19 vaccines authorized under emergency-use authorization have been administered globally, concerns regarding the vaccines have increased owing to the occurrence of various side effects. The present study aimed to evaluate the safety of a non-replicating recombinant baculovirus expressing the human endogenous retrovirus envelope gene (AcHERV) vaccine encoding SARS-CoV-2 antigens. Owing to the limited number of existing safety pharmacology studies on AcHERV as a viral vector vaccine, we conducted neurobehavior (Modified Irwin's Test), body temperature, and respiratory function studies in rats and cardiovascular system studies in male beagle dogs, which were administered the AcHERV-COVID-19 vaccine using telemetry. The safety assessment revealed no significant toxicological alterations. However, in rats, both sexes administered with the AcHERV-COVID-19 vaccine exhibited a temporary increase in body temperature, which normalized or showed signs of recovery. In conclusion, AcHERV-COVID-19 demonstrates a sufficient safety profile that supports its potential evaluation in future clinical trials.

2.
Vaccine ; 42(26): 126355, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260058

RESUMEN

Although the coronavirus pandemic has ended, new variants of concern (VOCs) continue to emerge. Therefore, novel vaccines targeting VOCs are highly warranted. We initially constructed three recombinant baculovirus-vectored vaccines (AcHERV-COVID19S) carrying the spike genes of the SARS-CoV-2 prototype, Delta, and Omicron BA.1 variants. However, the SARS-CoV-2 spike gene alone could not provide protection against multiple VOCs. To develop a universal vaccine, we constructed a recombinant baculovirus-vectored vaccine (AcHERV-COVID19 OmiM) by introducing the M gene, which is conserved among VOCs, as a secondary cellular immune antigen in addition to the S gene. AcHERV-COVID19 OmiM could provide higher protection against SARS-CoV-2 variants (prototype, Delta, BA.5 and XBB.1) compared with that of AcHERV-COVID19S. The membrane protein of SARS-CoV-2 synergizes with the S gene, thereby enhancing both humoral and cellular immunity against VOCs. Although AcHERV-COVID19 OmiM may not provide sterile protection against new variants, it may help reduce symptoms and curb viral transmission.

3.
Front Immunol ; 15: 1359209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040104

RESUMEN

Introduction: Although the safety and effectiveness of COVID-19 vaccination during pregnancy have been proven, there is still little data explaining neonatal outcomes of maternal pre-pregnancy vaccination. Methods: Here, we investigated the impact of vaccination and SARS-CoV-2 infection on maternal-neonate immune response in a cohort study involving 141 pregnant individuals, and defined the importance of maternal COVID-19 vaccination timing for its effectiveness. Results and discussion: Our data indicate that vertically transferred maternal hybrid immunity provides significantly better antiviral protection for a neonate than either maternal post-infection or post-vaccination immunity alone. Higher neutralization potency among mothers immunized before pregnancy and their newborns highlights the promising role of pre-pregnancy vaccination in neonatal protection. A comparison of neutralizing antibody titers calculated for each dyad suggests that infection and pre-/during-pregnancy vaccination all support transplacental transfer, providing the offspring with strong passive immunity against SARS-CoV-2. Analysis of neutralizing antibody levels in maternal sera collected during pregnancy and later during delivery shows that immunization may exert a positive effect on maternal protection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunidad Materno-Adquirida , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Vacunación , Humanos , Femenino , Embarazo , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Recién Nacido , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunación/métodos , Adulto , Estudios de Cohortes , Complicaciones Infecciosas del Embarazo/prevención & control , Complicaciones Infecciosas del Embarazo/inmunología
4.
Vaccines (Basel) ; 12(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543967

RESUMEN

Varicella-zoster virus (VZV) poses lifelong risks, causing varicella and herpes zoster (HZ, shingles). Currently, varicella and HZ vaccines are predominantly live attenuated vaccines or adjuvanted subunit vaccines utilizing VZV glycoprotein E (gE). Here, we propose our vaccine candidates involving a comparative analysis between recombinant baculoviral vector vaccines (AcHERV) and a live attenuated vaccine strain, vOka. AcHERV vaccine candidates were categorized into groups encoding gE only, VZV glycoprotein B (gB) only, or both gE and gB (gE-gB) as AcHERV-gE, AcHERV-gB, and AcHERV-gE-gB, respectively. Humoral immune responses were evaluated by analyzing total IgG, IgG1, IgG2a, and neutralizing antibodies. Cell-mediated immunity (CMI) responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and Th1/Th2/Th17 cytokine profiling. In the mouse model, AcHERV-gE-gB elicited similar or higher total IgG, IgG2a, and neutralizing antibody levels than vOka and showed robust VZV-specific CMI responses. From the perspective of antigens encoded in vaccines and their relationship with CMI response, both AcHERV-gB and AcHERV-gE-gB demonstrated results equal to or superior to AcHERV-gE, encoding only gE. Taken together, these results suggest that AcHERV-gE-gB can be a novel candidate for alleviating risks of live attenuated vaccine-induced latency and effectively preventing varicella during early stages of life while providing strong CMI for effective resistance against HZ and therapeutic potential in later stages of life.

5.
J Microbiol Biotechnol ; 34(1): 185-191, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37830223

RESUMEN

Various types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy. This study compared the biodistribution of the baculoviral vector vaccine (AcHERV-COVID19) and the adenoviral vector vaccine (Ad-COVID19). Both vaccines were administered intramuscularly to mice, and the distribution of the SARS-CoV-2 S gene in each tissue was evaluated for up to 30 days. After vaccination, serum and various tissue samples were collected from the mice at each time point, and IgG levels and DNA copy numbers were measured using an enzyme-linked immunosorbent assay and a quantitative real-time polymerase chain reaction. AcHERV-COVID19 and Ad-COVID19 distribution showed that the SARS-CoV-2 spike gene remained predominantly at the injection site in the mouse muscle. In kidney, liver, and spleen tissues, the AcHERV-COVID19 group showed about 2-4 times higher persistence of the SARS-CoV-2 spike gene than the Ad-COVID19 group. The distribution patterns of AcHERV-COVID19 and Ad-COVID19 within various organs highlight their contrasting biodistribution profiles, with AcHERV-COVID19 exhibiting a broader and prolonged presence in the body compared to Ad-COVID19. Understanding the biodistribution profile of AcHERV-COVID19 and Ad-COVID19 could help select viral vectors for future vaccine development.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Distribución Tisular , Vacunas Virales/genética , Anticuerpos Antivirales
6.
Vaccine ; 41(6): 1223-1231, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36631359

RESUMEN

After severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) made the world tremble with a global pandemic, SARS-CoV2 vaccines were developed. However, due to the coronavirus's intrinsic nature, new variants emerged, such as Delta and Omicron, refractory to the vaccines derived using the original Wuhan strain. We developed an HERV-enveloped recombinant baculoviral DNA vaccine against SARS-CoV2 (AcHERV-COVID19S). A non-replicating recombinant baculovirus that delivers the SARS-CoV2 spike gene showed a protective effect against the homologous challenge in a K18-hACE2 Tg mice model; however, it offered only a 50 % survival rate against the SARS-CoV2 Delta variant. Therefore, we further developed the AcHERV-COVID19 Delta vaccine (AcHERV-COVID19D). The AcHERV-COVID19D induced higher neutralizing antibodies against the Delta variant than the prototype or Omicron variant. On the other hand, cellular immunity was similarly high for all three SARS-CoV2 viruses. Cross-protection experiments revealed that mice vaccinated with the AcHERV-COVID19D showed 100 % survival upon challenge with Delta and Omicron variants and 71.4 % survival against prototype SARS-CoV2. These results support the potential of the viral vector vaccine, AcHERV-COVID19D, in preventing the spread of coronavirus variants such as Omicron and SARS-CoV2 variants.


Asunto(s)
COVID-19 , Vacunas de ADN , Vacunas Virales , Ratones , Animales , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Ratones Transgénicos , Enzima Convertidora de Angiotensina 2 , Vacunas de ADN/genética , ARN Viral , COVID-19/prevención & control , ADN , Vacunas Virales/genética , Anticuerpos Neutralizantes , Baculoviridae/genética , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA