Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891053

RESUMEN

The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.


Asunto(s)
Astrocitos , Enfermedades Neurodegenerativas , Astrocitos/metabolismo , Astrocitos/patología , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Animales , Fenotipo
2.
Cells ; 12(21)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947609

RESUMEN

Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aß) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aß aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446312

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Células Endoteliales/metabolismo , Ratones Transgénicos , Angiopatía Amiloide Cerebral/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
4.
Phys Rev Lett ; 127(20): 204501, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860033

RESUMEN

We report on the collision-coalescence dynamics of drops in Leidenfrost state using liquids with different physicochemical properties. Drops of the same liquid deposited on a hot concave surface coalesce practically at contact, but when drops of different liquids collide, they can bounce several times before finally coalescing when the one that evaporates faster reaches a size similar to its capillary length. The bouncing dynamics is produced because the drops are not only in Leidenfrost state with the substrate, they also experience Leidenfrost effect between them at the moment of collision. This happens due to their different boiling temperatures, and therefore, the hotter drop works as a hot surface for the drop with lower boiling point, producing three contact zones of Leidenfrost state simultaneously. We called this scenario the triple Leidenfrost effect.

5.
Soft Matter ; 13(20): 3822-3830, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28488715

RESUMEN

We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the film thickness and the probe speed have a significant effect on the threshold separation distance below which the jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the measurement of interaction forces.

6.
J Biomech Eng ; 133(12): 121003, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22206420

RESUMEN

A comparative experimental study of the velocity field and the strain field produced down-stream of biological and mechanical artificial valves is presented. In order to determine the spatial and temporal distributions of these fields, a phase-locked stereoscopic particle image velocimetry (or 3D-PIV) technique was implemented. Emphasis was placed on the identification of the fundamental differences between the extensional and the shear components of the strain tensor. The analysis of the characteristic flows reveal that the strains in every direction may reach high values at different times during the cardiac cycle. It was found that elevated strain levels persist throughout the cardiac cycle as a result of all these contributions. Finally, it is suggested that the frequency with which the strain variations occur at particular instants and locations could be associated to the cumulative damage process of the blood constituents and should be taken into account in the overall assessment of existing valve types, as well as in future design efforts.


Asunto(s)
Prótesis Valvulares Cardíacas , Hidrodinámica , Estrés Mecánico , Humanos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA