RESUMEN
We consider a massive particle driven with a constant force in a periodic potential and subjected to a dissipative friction. As a function of the drive and damping, the phase diagram of this paradigmatic model is well known to present a pinned, a sliding, and a bistable regime separated by three distinct bifurcation lines. In physical terms, the average velocity v of the particle is nonzero only if either (i) the driving force is large enough to remove any stable point, forcing the particle to slide or (ii) there are local minima but the damping is small enough, below a critical damping, for the inertia to allow the particle to cross barriers and follow a limit cycle; this regime is bistable and whether v>0 or v=0 depends on the initial state. In this paper, we focus on the asymptotes of the critical line separating the bistable and the pinned regimes. First, we study its behavior near the "triple point" where the pinned, the bistable, and the sliding dynamical regimes meet. Just below the critical damping we uncover a critical regime, where the line approaches the triple point following a power-law behavior. We show that its exponent is controlled by the normal form of the tilted potential close to its critical force. Second, in the opposite regime of very low damping, we revisit existing results by providing a simple method to determine analytically the exact behavior of the line in the case of a generic potential. The analytical estimates, accurately confirmed numerically, are obtained by exploiting exact soliton solutions describing the orbit in a modified tilted potential which can be mapped to the original tilted washboard potential. Our methods and results are particularly useful for an accurate description of underdamped nonuniform oscillators driven near their triple point.
RESUMEN
Any decomposition of the total trajectory entropy production for Markovian systems has a joint probability distribution satisfying a generalized detailed fluctuation theorem, when all the contributing terms are odd with respect to time reversal. The expression of the result does not bring into play dual probability distributions, hence easing potential applications. We show that several fluctuation theorems for perturbed nonequilibrium steady states are unified and arise as particular cases of this general result. In particular, we show that the joint probability distribution of the system and reservoir trajectory entropies satisfy a detailed fluctuation theorem valid for all times.