Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 60(3): 1036-1044, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908372

RESUMEN

Citrus limon (lemon) possesses immunoregulatory, antioxidant, and lipid-lowering effects. Our previous study showed that lemon fermented products (LFP) which were lemon fermented with Lactobacillus OPC1 had the ability to avert obesity. However, the LFP effects on the pathway of lipid metabolism by gut microbiota were still unclear. This study was aimed to investigate the LFP effects on liver lipid metabolism and gut microbiota in a rat model of obesity caused by a high-calorie diet. LFP effectively reduced the total triglyceride (49.7%) and total cholesterol (53.3%) contents of the liver. Additionally, the mRNA levels of genes related to triglyceride metabolism (SREBP-1c, PPARγ, and ACC), cholesterol metabolism (HMG-CoA reductase, ACAT, and LCAT), and lipid ß-oxidation (PPARα, and CPT-1) were regulated by LFP. Furthermore, LFP reduced the ratio of Firmicutes/Bacteroidetes and enhanced the ratio of Firmicutes Clostridia. Overall, these findings suggested that LFP might use as a potential dietary supplement for preventing obesity by modulating the lipid metabolism and improving the gut microbiota.

2.
Nutrients ; 13(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34444969

RESUMEN

Lemon (Citrus limon) has antioxidant, immunoregulatory, and blood lipid-lowering properties. This study aimed to determine the effect of the lemon fermented product (LFP) which is lemon fermented with Lactobacillus OPC1 to prevent obesity. The inhibition of lipid accumulation in 3T3-L1 adipocytes is examined using a Wistar rat model fed a high-fat diet to verify the anti-obesity efficacy and mechanism of LFP. Here, it was observed that LFP reduced cell proliferation and inhibited the lipid accumulation (8.3%) of 3T3-L1 adipocytes. Additionally, LFP reduced body weight (9.7%) and fat tissue weight (25.7%) of rats; reduced serum TG (17.0%), FFA (17.9%), glucose (29.3%) and ketone body (6.8%); and increased serum HDL-C (17.6%) and lipase activity (17.8%). LFP regulated the mRNA expression of genes related to lipid metabolism (PPARγ, C/EBPα, SREBP-1c, HSL, ATGL, FAS, and AMPK). Therefore, LFP reduces body weight and lipid accumulation by regulating the mRNA expression of genes related to lipid metabolism. Overall, our results implicate LFP as a potential dietary supplement for the prevention of obesity.


Asunto(s)
Fármacos Antiobesidad/farmacología , Citrus/química , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Preparaciones de Plantas/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Fermentación , Masculino , Ratones , Obesidad/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA