Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 953: 175891, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218093

RESUMEN

Anthropogenic activity has disturbed the natural distribution and circulation of trace elements in the environment. This has led to increased background levels of numerous elements, causing global pollution. In this context, seabirds are relevant bioindicators of environmental contamination. This study focuses on the ecological factors that influence the concentrations of 14 trace elements in the blood of the chicks of three sympatric gull species from the French coast of the English Channel. Between 2015 and 2017, 174 birds were sampled in the industrialised Seine Estuary (in the city of Le Havre and on Ratier Island) and in the remote Chausey Islands, 200 km to the west. We also considered the Se:Hg molar ratio using Hg concentrations in those birds. Ag and V concentrations were below the quantification limit in all cases, while the fraction of non-quantified samples was higher than 30 % for Cd, Cr and Ni. Among the elements quantified in the samples, the lowest concentrations were noted for Co and the highest for Fe, building the following order: Co < Cd < Ni < Mn ≤ Pb < Cr < Hg < Cu < Se < As < Zn < Fe. No unanimous scheme of concentrations among elements, species and sites existed. Similarly, different models were fitted and different factors were significant for different species and elements. We observed the biomagnification of As and the biodilution of Pb. Pb concentrations were also highest in the industrial site in the city of Le Havre. Despite the high proportion of non-quantified samples for Cd, Cr and Ni, we continued to notice higher concentrations in the marine environment of the Chausey Islands. Concentrations of some elements clearly revealed habitat dependence. In some cases the Se:Hg molar ratio was lower than 4, a threshold for diminishing Hg toxicity by Se.

2.
Sci Total Environ ; 952: 175857, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39209169

RESUMEN

Mercury (Hg) is a naturally occurring highly toxic element which circulation in ecosystems has been intensified by human activities. Hg is widely distributed, and marine environments act as its main final sink. Seabirds are relevant bioindicators of marine pollution and chicks are particularly suitable for biomonitoring pollutants as they reflect contamination at short spatiotemporal scales. This study aims to quantify blood Hg contamination and identify its drivers (trophic ecology inferred from stable isotopes of carbon (δ13C) and nitrogen (δ15N), geographical location, chick age and species) in chicks of eight seabird species from 32 French sites representing four marine subregions: the English Channel and the North Sea, the Celtic Sea, the Bay of Biscay and the Western Mediterranean. Hg concentrations in blood ranged from 0.04 µg g-1 dry weight (dw) in herring gulls to 6.15 µg g-1 dw in great black-backed gulls. Trophic position (δ15N values) was the main driver of interspecific differences, with species at higher trophic positions showing higher Hg concentrations. Feeding habitat (δ13C values) also contributed to variation in Hg contamination, with higher concentrations in generalist species relying on pelagic habitats. Conversely, colony location was a weak contributor, suggesting a relatively uniform Hg contamination along the French coastline. Most seabirds exhibited low Hg concentrations, with 74% of individuals categorized as no risk, and < 0.5% at moderate risk, according to toxicity thresholds. However, recent work has shown physiological and fitness impairments in seabirds bearing Hg burdens considered to be safe, calling for precautional use of toxicity thresholds, and for studies that evaluate the impact of Hg on chick development.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Contaminantes Químicos del Agua , Animales , Mercurio/sangre , Francia , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Aves , Charadriiformes
3.
Microorganisms ; 11(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37110292

RESUMEN

Birds are one of the most species-diverse vertebrate groups and are susceptible to numerous hematophagous ectoparasites. Migratory birds likely contribute to the circulation of these ectoparasites and their associated pathogens. One of the many migration paths crosses the Mediterranean islands including Corsica and its wetlands, which are migration stopovers. In our study, we collected blood samples and hematophagous ectoparasites in migratory and sedentary bird populations in two coastal lagoons: Biguglia and Gradugine. A total of 1377 birds were captured from which 762 blood samples, 37 louse flies, and 44 ticks were collected. All the louse flies were identified as Ornithomya biloba and all the ticks were from the Ixodes genus: Ixodes sp. (8.5%), I. accuminatus/ventalloi (2.9%), I. arboricola/lividus (14.3%), I. frontalis (5.7%) and I. ricinus (68.6%). Five pathogens were detected: Anaplasma phagocytophilum, Erhlichia chaffeensis, and Rickettsia helvetica in ticks, and Trypanosoma sp. in louse flies. Ehrlichia chaffeensis and the West Nile virus were both detected in bird blood samples in Corsica. This is the first report of these tick, louse fly and pathogen species isolated on the bird population in Corsica. Our finding highlights the importance of bird populations in the presence of arthropod-borne pathogens in Corsican wetlands.

4.
Chemosphere ; 267: 128622, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33162157

RESUMEN

Although mercury (Hg) occurs naturally, human activity is currently the greatest source of release and the ocean receives Hg inputs by rivers and atmospheric deposition. Seabirds including chicks serve as valuable bioindicators of Hg contamination, reflecting local contamination around the colony. This study investigates the ecological drivers (trophic position and foraging habitat) influencing Hg concentrations in blood and feathers of chicks of three sympatric marine gull species. Chicks were sampled between 2015 and 2017 in the Seine Estuary, one of the most Hg contaminated rivers in Europe, and in the Normand-Breton Gulf (the Chausey Islands), 200 km west, as a reference site with limited contaminant inputs. The trophic status of the chicks was evaluated based on the relative abundance of stable isotopes (δ13C, δ15N and δ34S). There was a tight correlation between Hg concentrations, as well as the abundance of stable isotopes, in blood and feathers. Great black-backed gull had the highest blood Hg concentrations of the species (1.80 ± 0.92 µg⋅g-1 dry weight (dw)); the Lesser black-backed gull had intermediate concentrations (0.61 ± 0.18 µg⋅g-1 dw); and the European herring gull had the lowest (0.37 ± 0.26 µg⋅g-1 dw). Individuals with the highest trophic position showed consistently the highest Hg concentrations. The positive relationship between Hg concentrations and the feeding habitat (marine vs terrestrial) indicated that the main source of Hg for gulls in the English Channel is marine prey. This exposure led to relatively high Hg concentrations in Great black-backed gull, which may produce toxic effects to individuals with potential consequences for their populations.


Asunto(s)
Charadriiformes , Mercurio , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Europa (Continente) , Cadena Alimentaria , Humanos , Islas , Mercurio/análisis
5.
Environ Pollut ; 159(10): 2609-15, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21737191

RESUMEN

The abundance of plastics in stomachs of northern fulmars from the North Sea is used in the OSPAR Ecological Quality Objective (EcoQO) for marine litter. The preliminary EcoQO defines acceptable ecological quality as the situation where no more than 10% of fulmars exceed a critical level of 0.1 g of plastic in the stomach. During 2003-2007, 95% of 1295 fulmars sampled in the North Sea had plastic in the stomach (on average 35 pieces weighing 0.31 g) and the critical level of 0.1 g of plastic was exceeded by 58% of birds, with regional variations ranging from 48 to 78%. Long term data for the Netherlands since the 1980s show a decrease of industrial, but an increase of user plastics, with shipping and fisheries as the main sources. The EcoQO is now also used as an indicator for Good Environmental Status in the European Marine Strategy Framework Directive.


Asunto(s)
Aves/metabolismo , Contenido Digestivo , Plásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Monitoreo del Ambiente , Países Bajos , Mar del Norte , Plásticos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA