Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Diabetes Sci Technol ; 8(5): 986-97, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24876437

RESUMEN

Continuous glucose monitoring (CGM) devices are being increasingly used to monitor glycemia in people with diabetes. One advantage with CGM is the ability to monitor the trend of sensor glucose (SG) over time. However, there are few metrics available for assessing the trend accuracy of CGM devices. The aim of this study was to develop an easy to interpret tool for assessing trend accuracy of CGM data. SG data from CGM were compared to hourly blood glucose (BG) measurements and trend accuracy was quantified using the dot product. Trend accuracy results are displayed on the Trend Compass, which depicts trend accuracy as a function of BG. A trend performance table and Trend Index (TI) metric are also proposed. The Trend Compass was tested using simulated CGM data with varying levels of error and variability, as well as real clinical CGM data. The results show that the Trend Compass is an effective tool for differentiating good trend accuracy from poor trend accuracy, independent of glycemic variability. Furthermore, the real clinical data show that the Trend Compass assesses trend accuracy independent of point bias error. Finally, the importance of assessing trend accuracy as a function of BG level is highlighted in a case example of low and falling BG data, with corresponding rising SG data. This study developed a simple to use tool for quantifying trend accuracy. The resulting trend accuracy is easily interpreted on the Trend Compass plot, and if required, performance table and TI metric.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/normas , Glucemia/análisis , Algoritmos , Humanos
2.
Comput Methods Programs Biomed ; 114(3): e39-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24548900

RESUMEN

Glucose-insulin system models are commonly used for identifying insulin sensitivity. With physiological, 2-compartment insulin kinetics models, accurate kinetic parameter values are required for reliable estimates of insulin sensitivity. This study uses data from 6 published microdialysis studies to determine the most appropriate parameter values for the transcapillary diffusion rate (n(I)) and cellular insulin clearance rate (n(C)). The 6 studies (12 data sets) used microdialysis techniques to simultaneously obtain interstitial and plasma insulin concentrations. The reported plasma insulin concentrations were used as input and interstitial insulin concentrations were simulated with the interstitial insulin kinetics sub-model. These simulated results were then compared to the reported interstitial measurements and the most appropriate set of parameter values was determined across the 12 data sets by combining the results. Interstitial insulin kinetic parameters values n(I)=n(C)=0.0060 min⁻¹ were shown to be the most appropriate. These parameter values are associated with an effective, interstitial insulin half-life, t(½)=58 min, within the range of 25-130 min reported by others.


Asunto(s)
Insulina/química , Algoritmos , Glucemia/química , Simulación por Computador , Líquido Extracelular/metabolismo , Humanos , Insulina/sangre , Cinética , Microdiálisis , Reproducibilidad de los Resultados , Programas Informáticos , Factores de Tiempo
3.
Comput Methods Programs Biomed ; 114(3): e79-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24074543

RESUMEN

A model-based insulin sensitivity parameter (SI) is often used in glucose-insulin system models to define the glycaemic response to insulin. As a parameter identified from clinical data, insulin sensitivity can be affected by blood glucose (BG) sensor error and measurement timing error, which can subsequently impact analyses or glycaemic variability during control. This study assessed the impact of both measurement timing and BG sensor errors on identified values of SI and its hour-to-hour variability within a common type of glucose-insulin system model. Retrospective clinical data were used from 270 patients admitted to the Christchurch Hospital ICU between 2005 and 2007 to identify insulin sensitivity profiles. We developed error models for the Abbott Optium Xceed glucometer and measurement timing from clinical data. The effect of these errors on the re-identified insulin sensitivity was investigated by Monte-Carlo analysis. The results of the study show that timing errors in isolation have little clinically significant impact on identified SI level or variability. The clinical impact of changes to SI level induced by combined sensor and timing errors is likely to be significant during glycaemic control. Identified values of SI were mostly (90th percentile) within 29% of the true value when influenced by both sources of error. However, these effects may be overshadowed by physiological factors arising from the critical condition of the patients or other under-modelled or un-modelled dynamics. Thus, glycaemic control protocols that are designed to work with data from glucometers need to be robust to these errors and not be too aggressive in dosing insulin.


Asunto(s)
Glucemia/análisis , Resistencia a la Insulina , Insulina/sangre , Anciano , Glucemia/química , Simulación por Computador , Diabetes Mellitus/sangre , Femenino , Humanos , Masculino , Errores Médicos/prevención & control , Persona de Mediana Edad , Monitoreo Fisiológico/instrumentación , Método de Montecarlo , Probabilidad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Programas Informáticos , Factores de Tiempo
4.
Comput Methods Programs Biomed ; 109(2): 211-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21940063

RESUMEN

Critically ill patients commonly experience stress-induced hyperglycaemia, and several studies have shown tight glycaemic control (TGC) can reduce patient mortality. However, tight control is often difficult to achieve due to conflicting drug therapies and evolving patient condition. Thus, a number of studies have failed to achieve consistently safe and effective TGC possibly due to the use of fixed insulin dosing protocols over adaptive patient-specific methods. Model-based targeted glucose control can adapt insulin and dextrose interventions to match identified patient insulin sensitivity. This study explores the impact on glycaemic control of assuming patient response to insulin is constant, as many protocols do, versus time-varying. Validated virtual trial simulations of glucose control were performed on adult and neonatal virtual patient cohorts. Results indicate assumptions of constant insulin sensitivity can lead to six-fold increases in incidence of hypoglycaemia, similar to literature reports and a commonly cited issue preventing increased adoption of TGC in critical care. It is clear that adaptive, patient-specific, approaches are better able to manage inter- and intra-patient variability than typical, fixed protocols.


Asunto(s)
Glucemia/análisis , Simulación por Computador , Enfermedad Crítica , Monitoreo Fisiológico/métodos , Adulto , Índice Glucémico , Humanos , Hipoglucemia/prevención & control , Hipoglucemiantes/administración & dosificación , Lactante , Insulina/administración & dosificación , Resistencia a la Insulina/fisiología , Nueva Zelanda
5.
J Diabetes Sci Technol ; 6(5): 1030-7, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23063028

RESUMEN

BACKGROUND: Critically ill patients often experience high levels of insulin resistance and stress-induced hyperglycemia, which may negatively impact outcomes. In 2001, Van den Berghe and coauthors used intensive insulin therapy (IIT) to control blood glucose (BG) to normal levels and reported a reduction in intensive care unit (ICU) mortality from 8% to 4.6%. Many studies tried to replicate these results, with some showing reduced mortality, others failing to match these results, and many seeing no clinically significant difference. The interpretation of results is important when drawing conclusions about the benefits and risks of IIT. There is the potential for negative results to be falsely negative due to unintended patient crossover or cohort overlap. AIM: The aim of this study was to investigate the association between the amount of time each critically ill patient experiences good glucose control and hospital mortality. METHODS: This study uses BG data from 784 patients admitted to the Christchurch Hospital ICU between January 2003 and May 2007. For each of the 5 days of analysis, all patients with BG data were pooled together in a single cohort before being stratified into two subcohorts based on glycemic performance, determined by cumulative time in band (cTIB). The cTIB metric is calculated per patient/per day and defined here as the percentage of time the patient's BG levels have been cumulatively in a specific band (72-126 mg/dl) up to and including the considered day. Subcohort A had patients with cTIB ≥ threshold and subcohort B had patients with cTIB < threshold. Three cTIB thresholds were tested: 0.3 (30%), 0.5 (50%), and 0.7 (70%). The odds of living (OL) were then calculated for each subcohort and day, forming the basis of comparison between the subcohorts. A second analysis was run using only the 310 patients with BG data for 5 days or more to assess the impact of patient dropout. RESULTS: Results show that, across all three cTIB threshold levels (0.3, 0.5, and 0.7) and all 5 days of analysis, patients with a cTIB ≥ threshold have a higher OL than patients with a cTIB < threshold. A cTIB threshold of 0.7 showed the strongest separation between the subcohorts, and on day 5, the OL for subcohort A was 4.4 versus 1.6 for subcohort B. The second analysis showed that patient dropout had little effect on the overall trends. Using a cTIB threshold of 0.7, the OL for subcohort A was 0.8 higher than the OL for subcohort B on day 1, which steadily increased over the 5 days of analysis. CONCLUSIONS: Results show that OL are higher for patients with cTIB ≥ 0.3-0.7 than patients with cTIB < 0.3-0.7, irrespective of how cTIB was achieved. A cTIB threshold of 0.5 was found to be a minimum acceptable threshold based on outcome. If cTIB is used in similar BG studies in the future, cTIB ≥ 0.7 may be a good target for glycemic control to ensure outcomes and to separate patients with good BG control from patients with poor control.


Asunto(s)
Glucemia/análisis , Enfermedad Crítica/terapia , Anciano , Estudios de Cohortes , Enfermedad Crítica/epidemiología , Enfermedad Crítica/mortalidad , Femenino , Mortalidad Hospitalaria , Hospitalización/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Pronóstico , Resultado del Tratamiento
6.
Diabetes Technol Ther ; 14(10): 883-90, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22856622

RESUMEN

BACKGROUND: Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG <2.6 mmol/L) in neonates. SUBJECTS AND METHODS: CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index. RESULTS: Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 µmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 µmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 µmol/L. CONCLUSIONS: Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Hipoglucemia/sangre , Algoritmos , Automonitorización de la Glucosa Sanguínea , Calibración , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Humanos , Hipoglucemia/diagnóstico , Hipoglucemia/fisiopatología , Recién Nacido , Masculino , Monitoreo Ambulatorio , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
7.
Biomed Eng Online ; 11: 58, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22917085

RESUMEN

BACKGROUND: Critically ill patients often present increased insulin resistance and stress-induced hyperglycemia. Tight glycemic control aims to reduce blood glucose (BG) levels and variability while ensuring safety from hypoglycemia. This paper presents the results of the second Belgian clinical trial using the customizable STAR framework in a target-to-range control approach. The main objective is reducing measurement frequency while maintaining performance and safety of the glycemic control. METHODS: The STAR-Liege 2 (SL2) protocol targeted the 100-140 mg/dL glycemic band and offered 2-hourly and 3-hourly interventions. Only insulin rates were adjusted, and nutrition inputs were left to the attending clinicians. This protocol restricted the forecasted risk of BG < 90 mg/dL to a 5% level using a stochastic model of insulin sensitivity to assess patient-specific responses to insulin and its future likely variability to optimize insulin interventions. The clinical trial was performed at the Centre Hospitalier Universitaire de Liege and included 9 patients. Results are compared to 24-hour pre-trial and 24-hour post-trial, but also to the results of the first pilot trial performed in Liege, STAR-Liege 1 (SL1). This trial was approved by the Ethics Committee of the Medical Faculty of the University of Liege (Liege, Belgium). RESULTS: During the SL2 trial, 91 measurements were taken over 194 hours. BG levels were tightly distributed: 54.9% of BG within 100-140 mg/dL, 40.7% were ≥ 140 mg/dL and 4.4% were < 100 mg/dL with no BG < 70 mg/dL. Comparing these results with 24-hour pre-trial and post-trial shows that SL2 reduced high and low BG levels and reduced glycemic variability. Nurses selected 3-hourly measurement only 5 of 16 times and overrode 12% of 91 recommended interventions (35% increased insulin rates and 65% decreased insulin rates). SL1 and SL2 present similar BG levels distribution (p > 0.05) with significantly reduced measurement frequency for SL2 (p < 0.05). CONCLUSIONS: The SL2 protocol succeeded in reducing clinical workload while maintaining safety and effectiveness of the glycemic control. SL2 was also shown to be safer and tighter than hospital control. Overall results validate the efficacy of significantly customizing the STAR framework.


Asunto(s)
Glucemia/metabolismo , Cuidados Críticos/métodos , Enfermedad Crítica/terapia , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Control de Calidad , Seguridad , Carga de Trabajo
8.
IEEE Trans Biomed Eng ; 59(12): 3357-64, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22929365

RESUMEN

Accurate glycemic control (AGC) is difficult due to excessive hypoglycemia risk. Stochastic TARgeted (STAR) glycemic control forecasts changes in insulin sensitivity to calculate a range of glycemic outcomes for an insulin intervention, creating a risk framework to improve safety and performance. An improved, simplified STAR framework was developed to reduce light hypoglycemia and clinical effort, while improving nutrition rates and performance. Blood glucose (BG) levels are targeted to 80-145 mg/dL, using insulin and nutrition control for 1-3 h interventions. Insulin changes are limited to +3U/h and nutrition to ±30% of goal rate (minimum 30%). All targets and rate change limits are clinically specified and generalizable. Clinically validated virtual trials were run on using clinical data from 371 patients (39841 h) from the Specialized Relative Insulin and Nutrition Tables (SPRINT) cohort. Cohort and per-patient results are compared to clinical SPRINT data, and virtual trials of three published protocols. Performance was measured as time within glycemic bands, and safety by patients with severe (BG < 40 mg/dL) and mild (%BG < 72 mg/dL) hypoglycemia. Pilot trial results from the first ten patients (1486 h) are included to support the in-silico findings. In both virtual and clinical trials, mild hypoglycemia was below 2% versus 4% for SPRINT. Severe hypoglycemia was reduced from 14 (SPRINT) to 6 (STAR), and 0 in the pilot trial. AGC was tighter than both SPRINT clinical data and in-silico comparison protocols, with 91% BG within the specified target (80-145 mg/dL) in virtual trials and 89.4% in pilot trials. Clinical effort (measurements) was reduced from 16.2/day to 11.8/day (13.5/day in pilot trials). This STAR framework provides safe AGC with significant reductions in hypoglycemia and clinical effort due to stochastic forecasting of patient variation-a unique risk-based approach. Initial pilot trials validate the in-silico design methods and resulting protocol, all of which can be generalized to suit any given clinical environment.


Asunto(s)
Glucemia/metabolismo , Hipoglucemia/prevención & control , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Modelos Biológicos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Glucemia/análisis , Glucemia/efectos de los fármacos , Ensayos Clínicos como Asunto , Estudios de Cohortes , Simulación por Computador , Femenino , Humanos , Hipoglucemia/sangre , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
9.
BMC Pediatr ; 12: 117, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22871230

RESUMEN

BACKGROUND: Hyperglycemia often occurs in premature, very low birthweight infants (VLBW) due to immaturity of endogenous regulatory systems and the stress of their condition. Hyperglycemia in neonates has been linked to increased morbidities and mortality and occurs at increasing rates with decreasing birthweight. In this cohort, the emerging use of insulin to manage hyperglycemia has carried a significant risk of hypoglycemia. The efficacy of blood glucose control using a computer metabolic system model to determine insulin infusion rates was assessed in very-low-birth-weight infants. METHODS: Initial short-term 24-hour trials were performed on 8 VLBW infants with hyperglycemia followed by long-term trials of several days performed on 22 infants. Median birthweight was 745 g and 760 g for short-term and long-term trial infants, and median gestational age at birth was 25.6 and 25.4 weeks respectively. Blood glucose control is compared to 21 retrospective patients from the same unit who received insulin infusions determined by sliding scales and clinician intuition. This study was approved by the Upper South A Regional Ethics Committee, New Zealand (ClinicalTrials.gov registration NCT01419873). RESULTS: Reduction in hyperglycemia towards the target glucose band was achieved safely in all cases during the short-term trials with no hypoglycemic episodes. Lower median blood glucose concentration was achieved during clinical implementation at 6.6 mmol/L (IQR: 5.5 - 8.2 mmol/L, 1,003 measurements), compared to 8.0 mmol/L achieved in similar infants previously (p < 0.01). No significant difference in incidence of hypoglycemia during long-term trials was observed (0.25% vs 0.25%, p = 0.51). Percentage of blood glucose within the 4.0 - 8.0 mmol/L range was increased by 41% compared to the retrospective cohort (68.4% vs 48.4%, p < 0.01). CONCLUSIONS: A computer model that accurately captures the dynamics of neonatal metabolism can provide safe and effective blood glucose control without increasing hypoglycemia. TRIAL REGISTRATION: ClinicalTrials.gov registration NCT01419873.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Enfermedades del Prematuro/tratamiento farmacológico , Recién Nacido de muy Bajo Peso/sangre , Insulina/administración & dosificación , Modelos Biológicos , Algoritmos , Biomarcadores/sangre , Humanos , Hiperglucemia/sangre , Hipoglucemia/sangre , Hipoglucemia/inducido químicamente , Hipoglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/sangre , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Resistencia a la Insulina , Proyectos Piloto
10.
Biomed Eng Online ; 11: 45, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22866980

RESUMEN

BACKGROUND: Abnormal blood glucose (BG) concentrations have been associated with increased morbidity and mortality in both critically ill adults and infants. Furthermore, hypoglycaemia and glycaemic variability have both been independently linked to mortality in these patients. Continuous Glucose Monitoring (CGM) devices have the potential to improve detection and diagnosis of these glycaemic abnormalities. However, sensor noise is a trade-off of the high measurement rate and must be managed effectively if CGMs are going to be used to monitor, diagnose and potentially help treat glycaemic abnormalities. AIM: To develop a tool that will aid clinicians in identifying unusual CGM behaviour and highlight CGM data that potentially need to be interpreted with care. METHODS: CGM data and BG measurements from 50 infants at risk of hypoglycaemia were used. Unusual CGM measurements were classified using a stochastic model based on the kernel density method and historical CGM measurements from the cohort. CGM traces were colour coded with very unusual measurements coloured red, highlighting areas to be interpreted with care. A 5-fold validation of the model was Monte Carlo simulated 25 times to ensure an adequate model fit. RESULTS: The stochastic model was generated using ~67,000 CGM measurements, spread across the glycaemic range ~2-10 mmol/L. A 5-fold validation showed a good model fit: the model 80% confidence interval (CI) captured 83% of clinical CGM data, the model 90% CI captured 91% of clinical CGM data, and the model 99% CI captured 99% of clinical CGM data. Three patient examples show the stochastic classification method in use with 1) A stable, low variability patient which shows no unusual CGM measurements, 2) A patient with a very sudden, short hypoglycaemic event (classified as unusual), and, 3) A patient with very high, potentially un-physiological, glycaemic variability after day 3 of monitoring (classified as very unusual). CONCLUSIONS: This study has produced a stochastic model and classification method capable of highlighting unusual CGM behaviour. This method has the potential to classify important glycaemic events (e.g. hypoglycaemia) as true clinical events or sensor noise, and to help identify possible sensor degradation. Colour coded CGM traces convey the information quickly and efficiently, while remaining computationally light enough to be used retrospectively or in real-time.


Asunto(s)
Glucemia/análisis , Interpretación Estadística de Datos , Modelos Estadísticos , Monitoreo Fisiológico/métodos , Femenino , Humanos , Hipoglucemia/sangre , Recién Nacido , Masculino , Reproducibilidad de los Resultados , Estudios Retrospectivos , Riesgo , Procesos Estocásticos
11.
Ann Intensive Care ; 2(1): 17, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22703645

RESUMEN

BACKGROUND: Effective tight glycemic control (TGC) can improve outcomes in critical care patients, but it is difficult to achieve consistently. Insulin sensitivity defines the metabolic balance between insulin concentration and insulin-mediated glucose disposal. Hence, variability of insulin sensitivity can cause variable glycemia. This study quantifies and compares the daily evolution of insulin sensitivity level and variability for critical care patients receiving TGC. METHODS: This is a retrospective analysis of data from the SPRINT TGC study involving patients admitted to a mixed medical-surgical ICU between August 2005 and May 2007. Only patients who commenced TGC within 12 hours of ICU admission and spent at least 24 hours on the SPRINT protocol were included (N = 164). Model-based insulin sensitivity (SI) was identified each hour. Absolute level and hour-to-hour percent changes in SI were assessed on cohort and per-patient bases. Levels and variability of SI were compared over time on 24-hour and 6-hour timescales for the first 4 days of ICU stay. RESULTS: Cohort and per-patient median SI levels increased by 34% and 33% (p < 0.001) between days 1 and 2 of ICU stay. Concomitantly, cohort and per-patient SI variability decreased by 32% and 36% (p < 0.001). For 72% of the cohort, median SI on day 2 was higher than on day 1. The day 1-2 results are the only clear, statistically significant trends across both analyses. Analysis of the first 24 hours using 6-hour blocks of SI data showed that most of the improvement in insulin sensitivity level and variability seen between days 1 and 2 occurred during the first 12-18 hours of day 1. CONCLUSIONS: Critically ill patients have significantly lower and more variable insulin sensitivity on day 1 than later in their ICU stay and particularly during the first 12 hours. This rapid improvement is likely due to the decline of counter-regulatory hormones as the acute phase of critical illness progresses. Clinically, these results suggest that while using TGC protocols with patients during their first few days of ICU stay, extra care should be afforded. Increased measurement frequency, higher target glycemic bands, conservative insulin dosing, and modulation of carbohydrate nutrition should be considered to minimize safely the outcome glycemic variability and reduce the risk of hypoglycemia.

12.
J Diabetes Sci Technol ; 6(1): 102-15, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22401328

RESUMEN

INTRODUCTION: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in virtual and clinical pilot trials. METHODS: Clinically validated virtual trials using data from 370 patients in the SPRINT (Specialized Relative Insulin and Nutrition Titration) study were used to design the STAR protocol and test its safety, performance, and required clinical effort prior to clinical pilot trials. Insulin and nutrition interventions were given every 1-3 h as chosen by the nurse to allow them to manage workload. Interventions were designed to maximize the overlap of the model-predicted (5-95(th) percentile) range of BG outcomes with the 72-117 mg/dl band and thus provide a maximum 5% risk of BG <72 mg/dl. Interventions were calculated using clinically validated computer models of human metabolism and its variability in critical illness. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) goal (25 kg/kcal/h). Insulin doses were limited (8 U/h maximum), with limited increases based on current rate (0.5-2.0 U/h). Initial clinical pilot trials involved 3 patients covering ~450 h. Approval was granted by the Upper South A Regional Ethics Committee. RESULTS: Virtual trials indicate that STAR provides similar glycemic control performance to SPRINT with 2-3 h (maximum) measurement intervals. Time in the 72-126 mg/dl and 72-145 mg/dl bands was equivalent for all controllers, indicating that glycemic outcome differences between protocols were only shifted in this range. Safety from hypoglycemia was improved. Importantly, STAR using 2-3 h (maximum) intervention intervals reduced clinical burden up to 30%, which is clinically very significant. Initial clinical trials showed glycemic performance, safety, and management of inter- and intrapatient variability that matched or exceeded the virtual trial results. CONCLUSIONS: In virtual trials, STAR TGC provided tight control that maximized the likelihood of BG in a clinically specified glycemic band and reduced hypoglycemia with a maximum 5% (or lower) expected risk of light hypoglycemia (BG <72 mg/dl) via model-based management of intra- and interpatient variability. Clinical workload was self-managed and reduced up to 30% compared with SPRINT. Initial pilot clinical trials matched or exceeded these virtual results.


Asunto(s)
Glucemia/metabolismo , Protocolos Clínicos , Modelos Teóricos , Monitoreo Fisiológico/métodos , Seguridad del Paciente , Proyectos de Investigación , Anciano , Glucemia/análisis , Protocolos Clínicos/normas , Ensayos Clínicos como Asunto/métodos , Costo de Enfermedad , Cuidados Críticos/métodos , Cuidados Críticos/normas , Enfermedad Crítica/terapia , Evaluación del Rendimiento de Empleados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procesos Estocásticos , Interfaz Usuario-Computador , Carga de Trabajo
13.
J Diabetes Sci Technol ; 6(1): 125-34, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22401330

RESUMEN

INTRODUCTION: Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. METHOD: The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. RESULTS: The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. CONCLUSIONS: The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable.


Asunto(s)
Glucemia/metabolismo , Cuidados Críticos/métodos , Enfermedad Crítica/terapia , Modelos Teóricos , Monitoreo Fisiológico/métodos , Proyectos de Investigación , Interfaz Usuario-Computador , Glucemia/análisis , Protocolos Clínicos/normas , Gráficos por Computador , Recolección de Datos/normas , Implementación de Plan de Salud/normas , Humanos , Almacenamiento y Recuperación de la Información/normas , Modelos Biológicos , Monitoreo Fisiológico/normas , Procesos Estocásticos
14.
J Diabetes Sci Technol ; 6(1): 135-43, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22401331

RESUMEN

INTRODUCTION: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. METHOD: To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. RESULTS: The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. CONCLUSIONS: The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols.


Asunto(s)
Glucemia/metabolismo , Cuidados Críticos/métodos , Enfermedad Crítica/terapia , Almacenamiento y Recuperación de la Información/normas , Modelos Teóricos , Proyectos de Investigación/normas , Glucemia/análisis , Computadores , Cuidados Críticos/normas , Humanos , Almacenamiento y Recuperación de la Información/métodos , Errores Médicos/prevención & control , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Proyectos Piloto , Procesos Estocásticos , Tacto/fisiología , Interfaz Usuario-Computador
15.
J Diabetes Sci Technol ; 6(6): 1464-77, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23294794

RESUMEN

INTRODUCTION: Stress-induced hyperglycemia increases morbidity and mortality. Tight control can reduce mortality but has proven difficult to achieve. The SPRINT (Specialized Relative Insulin and Nutrition Tables) protocol is the only protocol that reduced both mortality and hypoglycemia by modulating both insulin and nutrition, but it has not been tested in independent hospitals. METHODS: SPRINT was used for 12 adult intensive care unit patients (949 h) at Kálmán Pándy Hospital (Gyula, Hungary) as a clinical practice assessment. Insulin recommendations (0-6 U/h) were administered via constant infusion rather than bolus delivery. Nutrition was administered per local standard protocol, weaning parenteral to enteral nutrition, but was modulated per SPRINT recommendations. Measurement was every 1 to 2 h, per protocol. Glycemic performance is assessed by percentage of blood glucose (BG) measurements in glycemic bands for the cohort and per patient. Safety from hypoglycemia is assessed by numbers of patients with BG < 2.2 (severe) and %BG < 3.0 and < 4.0 mmol/liter (moderate and light). Clinical effort is assessed by measurements per day. Results are median (interquartile range). RESULTS: There were 742 measurements over 1088 h of control (16.4 measurements/day), which is similar to clinical SPRINT results (16.2/day). Per-patient hours of control were 65 (50-95) h. Initial per-patient BG was 10.5 (7.9-11.2) mmol/liter. All patients (100%) reached 6.1 mmol/liter. Cohort BG was 6.3 (5.5-7.5) mmol/liter, with 42.2%, 65.1% and 77.6% of BG in the 4.0-6.1, 4.0-7.0, and 4.0-8.0 mmol/liter bands. Per-patient, median percentage time in these bands was 40.2 (26.7-51.5)%, 62.5 (46.0-75.7)%, and 74.7 (61.6.8-87.8)%, respectively. No patients had BG < 2.2 mmol/liter, and the %BG < 4.0 mmol/liter was 1.9%. These results were achieved using 3.0 (3.0-5.0) U/h of insulin with 7.4 (4.4-10.2) g/h of dextrose administration (all sources) for the cohort. Per-patient median insulin administration was 3.0 (3.0-3.0) U/h and 7.1 (3.4-9.6) g/h dextrose. Higher carbohydrate nutrition formulas than were used in SPRINT are offset by slightly higher insulin administration in this study. CONCLUSIONS: The glycemic performance shows that using the SPRINT protocol to guide insulin infusions and nutrition administration provided very good glycemic control in initial pilot testing, with no severe hypoglycemia. The overall design of the protocol was able to be generalized with good compliance and outcomes across geographically distinct clinical units, patients, and clinical practice.


Asunto(s)
Árboles de Decisión , Hiperglucemia/prevención & control , Hipoglucemia/prevención & control , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Glucemia/análisis , Cuidados Críticos/métodos , Nutrición Enteral , Femenino , Humanos , Hungría , Infusiones Intravenosas , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto Joven
16.
Comput Methods Programs Biomed ; 108(2): 844-59, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21885150

RESUMEN

Tight glycemic control (TGC) has shown benefits in ICU patients, but been difficult to achieve consistently due to inter- and intra- patient variability that requires more adaptive, patient-specific solutions. STAR (Stochastic TARgeted) is a flexible model-based TGC framework accounting for patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dL. This research describes the first clinical pilot trial of the STAR approach and the post-trial analysis of the models and methods that underpin the protocol. The STAR framework works with clinically specified targets and intervention guidelines. The clinically specified glycemic target was 125 mg/dL. Each trial was 24 h with BG measured 1-2 hourly. Two-hourly measurement was used when BG was between 110-135 mg/dL for 3 h. In the STAR approach, each intervention leads to a predicted BG level and outcome range (5-95th percentile) based on a stochastic model of metabolic patient variability. Carbohydrate intake (all sources) was monitored, but not changed from clinical settings except to prevent BG<100 mg/dL when no insulin was given. Insulin infusion rates were limited (6 U/h maximum), with limited increases based on current infusion rate (0.5-2.0 U/h), making this use of the STAR framework an insulin-only TGC approach. Approval was granted by the Ethics Committee of the Medical Faculty of the University of Liege (Liege, Belgium). Nine patient trials were undertaken after obtaining informed consent. There were 205 measurements over all 9 trials. Median [IQR] per-patient results were: BG: 138.5 [130.6-146.0]mg/dL; carbohydrate administered: 2-11 g/h; median insulin:1.3 [0.9-2.4]U/h with a maximum of 6.0 [4.7-6.0]U/h. Median [IQR] time in the desired 110-140 mg/dL band was: 50.0 [31.2-54.2]%. Median model prediction errors ranged: 10-18%, with larger errors due to small meals and other clinical events. The minimum BG was 63 mg/dL and no other measurement was below 72 mg/dL, so only 1 measurement (0.5%) was below the 5% guaranteed minimum risk level. Post-trial analysis showed that patients were more variable than predicted by the stochastic model used for control, resulting in some of the prediction errors seen. Analysis and (validated) virtual trial re-simulating the clinical trial using stochastic models relevant to the patient's particular day of ICU stay were seen to be more accurate in capturing the observed variability. This analysis indicated that equivalent control and safety could be obtained with similar or lower glycemic variability in control using more specific stochastic models. STAR effectively controlled all patients to target. Observed patient variability in response to insulin and thus prediction errors were higher than expected, likely due to the recent insult of cardiac surgery or a major cardiac event, and their immediate recovery. STAR effectively managed this variability with no hypoglycemia. Improved stochastic models will be used to prospectively test these outcomes in further ongoing clinical pilot trials in this and other units.


Asunto(s)
Glucemia/análisis , Protocolos Clínicos , Enfermedad Crítica , Femenino , Humanos , Masculino , Proyectos Piloto , Procesos Estocásticos
17.
Ann Intensive Care ; 1(1): 11, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21906337

RESUMEN

Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary to, and fit within, protocolized approaches.Computational models of human physiology offer the potential, with clinical data, to create patient-specific models that capture a patient's physiological status. Such models can provide new insights into patient condition by turning a series of sometimes confusing clinical data into a clear physiological picture. More directly, they can track patient-specific conditions and thus provide new means of diagnosis and opportunities for optimising therapy.This article presents the concept of model-based therapeutics, the use of computational models in clinical medicine and critical care in specific, as well as its potential clinical advantages, in a format designed for the clinical perspective. The review is presented in terms of a series of questions and answers. These aspects directly address questions concerning what makes a model, how it is made patient-specific, what it can be used for, its limitations and, importantly, what constitutes sufficient validation.To provide a concrete foundation, the concepts are presented broadly, but the details are given in terms of a specific case example. Specifically, tight glycemic control (TGC) is an area where inter- and intra-patient variability can dominate the quality of care control and care received from any given protocol. The overall review clearly shows the concept and significant clinical potential of using computational models in critical care medicine.

18.
Ann Intensive Care ; 1: 38, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21929821

RESUMEN

INTRODUCTION: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach directly accounting for intra- and inter- patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) < 4.0 mmol/L. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in pilot trials. METHODS: Seven patients covering 660 hours. Insulin and nutrition interventions are given 1-3 hourly as chosen by the nurse to allow them to manage workload. Interventions are calculated by using clinically validated computer models of human metabolism and its variability in critical illness to maximize the overlap of the model-predicted (5-95th percentile) range of BG outcomes with the 4.0-6.5 mmol/L band while ensuring a maximum 5% risk of BG < 4.0 mmol/L. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of SCCM/ACCP goal (25 kg/kcal/h). Maximum insulin doses and dose changes were limited for safety. Measurements were made with glucometers. Results are compared to those for the SPRINT study, which reduced mortality 25-40% for length of stay ≥3 days. Written informed consent was obtained for all patients, and approval was granted by the NZ Upper South A Regional Ethics Committee. RESULTS: A total of 402 measurements were taken over 660 hours (~14/day), because nurses showed a preference for 2-hourly measurements. Median [interquartile range, (IQR)] cohort BG was 5.9 mmol/L [5.2-6.8]. Overall, 63.2%, 75.9%, and 89.8% of measurements were in the 4.0-6.5, 4.0-7.0, and 4.0-8.0 mmol/L bands. There were no hypoglycemic events (BG < 2.2 mmol/L), and the minimum BG was 3.5 mmol/L with 4.5% < 4.4 mmol/L. Per patient, the median [IQR] hours of TGC was 92 h [29-113] using 53 [19-62] measurements (median, ~13/day). Median [IQR] results: BG, 5.9 mmol/L [5.8-6.3]; carbohydrate nutrition, 6.8 g/h [5.5-8.7] (~70% goal feed median); insulin, 2.5 U/h [0.1-5.1]. All patients achieved BG < 6.1 mmol/L. These results match or exceed SPRINT and clinical workload is reduced more than 20%. CONCLUSIONS: STAR TGC modulating insulin and nutrition inputs provided very tight control with minimal variability by managing intra- and inter- patient variability. Performance and safety exceed that of SPRINT, which reduced mortality and cost in the Christchurch ICU. The use of glucometers did not appear to impact the quality of TGC. Finally, clinical workload was self-managed and reduced 20% compared with SPRINT.

19.
Comput Methods Programs Biomed ; 102(2): 192-205, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21288592

RESUMEN

Intensive insulin therapy (IIT) and tight glycaemic control (TGC), particularly in intensive care unit (ICU), are the subjects of increasing and controversial debate in recent years. Model-based TGC has shown potential in delivering safe and tight glycaemic management, all the while limiting hypoglycaemia. A comprehensive, more physiologically relevant Intensive Control Insulin-Nutrition-Glucose (ICING) model is presented and validated using data from critically ill patients. Two existing glucose-insulin models are reviewed and formed the basis for the ICING model. Model limitations are discussed with respect to relevant physiology, pharmacodynamics and TGC practicality. Model identifiability issues are carefully considered for clinical settings. This article also contains significant reference to relevant physiology and clinical literature, as well as some references to the modeling efforts in this field. Identification of critical constant population parameters was performed in two stages, thus addressing model identifiability issues. Model predictive performance is the primary factor for optimizing population parameter values. The use of population values are necessary due to the limited clinical data available at the bedside in the clinical control scenario. Insulin sensitivity, S(I), the only dynamic, time-varying parameter, is identified hourly for each individual. All population parameters are justified physiologically and with respect to values reported in the clinical literature. A parameter sensitivity study confirms the validity of limiting time-varying parameters to S(I) only, as well as the choices for the population parameters. The ICING model achieves median fitting error of <1% over data from 173 patients (N=42,941 h in total) who received insulin while in the ICU and stayed for ≥ 72 h. Most importantly, the median per-patient 1-h ahead prediction error is a very low 2.80% [IQR 1.18, 6.41%]. It is significant that the 75th percentile prediction error is within the lower bound of typical glucometer measurement errors of 7-12%. These results confirm that the ICING model is suitable for developing model-based insulin therapies, and capable of delivering real-time model-based TGC with a very tight prediction error range. Finally, the detailed examination and discussion of issues surrounding model-based TGC and existing glucose-insulin models render this article a mini-review of the state of model-based TGC in critical care.


Asunto(s)
Glucemia/metabolismo , Enfermedad Crítica/terapia , Insulina/administración & dosificación , Modelos Biológicos , Terapia Asistida por Computador/métodos , Simulación por Computador , Cuidados Críticos , Humanos , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/terapia , Insulina/metabolismo , Insulina/farmacocinética , Resistencia a la Insulina , Fenómenos Fisiológicos de la Nutrición
20.
Comput Methods Programs Biomed ; 102(2): 181-91, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21247652

RESUMEN

Extremely premature neonates often experience hyperglycaemia, which has been linked to increased mortality and worsened outcomes. Insulin therapy can assist in controlling blood glucose levels and promoting needed growth. This study presents the development of a model-based stochastic targeted controller designed to adapt insulin infusion rates to match the unique and changing metabolic state and control parameters of the neonate. Long-term usage of targeted BG control requires successfully forecasting variations in neonatal metabolic state, accounting for differences in clinical practices between units, and demonstrating robustness to errors that can occur in everyday clinical usage. Simulation studies were used to evaluate controller ability to target several common BG ranges and evaluate controller sensitivity to missed BG measurements and delays in control interventions on a virtual patient cohort of 25 infants developed from retrospective data. Initial clinical pilot trials indicated model performance matched expected performance from simulations. Stochastic targeted glucose control developed using validated patient-specific virtual trials can yield effective protocols for this cohort. Long-term trials show fundamental success, however clinical interface design appears as a critical factor to ensuring good compliance and thus good control.


Asunto(s)
Glucemia/metabolismo , Quimioterapia Asistida por Computador/métodos , Hiperglucemia/tratamiento farmacológico , Recien Nacido Prematuro/sangre , Protocolos Clínicos , Simulación por Computador , Humanos , Hiperglucemia/sangre , Recién Nacido , Insulina/administración & dosificación , Sistemas de Infusión de Insulina/estadística & datos numéricos , Modelos Biológicos , Proyectos Piloto , Estudios Retrospectivos , Procesos Estocásticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA