Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(32): 22563-22569, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082215

RESUMEN

The ability to quantify individual components of complex mixtures is a challenge found throughout the life and physical sciences. An improved capacity to generate large data sets along with the uptake of machine-learning (ML)-based analysis tools has allowed for various "omics" disciplines to realize exceptional advances. Other areas of chemistry that deal with complex mixtures often do not leverage these advances. Environmental samples, for example, can be more difficult to access, and the resulting small data sets are less appropriate for unconstrained ML approaches. Herein, we present an approach to address this latter issue. Using a very small environmental data set─35 high-resolution mass spectra gathered from various solvent extractions of Canadian petroleum fractions─we show that the application of specific domain knowledge can lead to ML models with notable performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA