Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 124: 1-7, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592320

RESUMEN

Massive quantities of fly ash are produced worldwide from thermal power plants, posing a serious environmental threat due to their storage and disposal problems. In this study, for the first time, fly ash is converted into an advanced and novel aerogel through a green and eco-friendly process. The developed aerogel has a low density of 0.10-0.19 g cm-3, a high porosity of up to 90%, a low thermal conductivity of 0.042-0.050 W/mK, and a good sound absorption coefficient (noise reduction coefficient [NRC] value of 0.20-0.30). It also shows a high compressive Young's modulus of up to 150 kPa. Therefore, the newly developed fly ash aerogel is a potential material for thermal and acoustic insulation applications, along with lightweight composites in automotive and aerospace applications.


Asunto(s)
Ceniza del Carbón , Centrales Eléctricas , Acústica , Porosidad , Conductividad Térmica
2.
Carbohydr Polym ; 228: 115365, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31635729

RESUMEN

A promising and economic material for various applications, such as thermal insulation in construction building and oil clean-up in marine ecosystems, is successfully developed from the by-product of the sugarcane industry. Biodegradable sugarcane bagasse aerogels are produced using polyvinyl alcohol (PVA) binder, followed by a freeze-drying method. This environmental-friendly recycled aerogel has an ultra-low density ([0.016-0.112] g/cm3), a high porosity ([91.9-98.9]%), and a very low thermal conductivity ([0.031-0.042] W/mK). Its superhydrophobicity properties and its maximum oil absorption capacity (up to 25 g/g) are measured after coating aerogel samples with methyltrimethoxysilane (MTMS). The biodegradable aerogel has a Young's modulus of 88 K Pa and can be bent without breaking, demonstrating its high flexibility.

3.
Polymers (Basel) ; 11(12)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779069

RESUMEN

A fully biodegradable hybrid coffee-cotton aerogel has been successfully developed from spent coffee grounds, 100% cotton fiber and polyvinyl alcohol (PVA) flakes via environmental friendly processes. The cotton fibers in coffee aerogel help to maintain the structure and improve the overall properties of the new hybrid coffee-cotton aerogel. The results show that increasing the concentration of fibers, while keeping the concentration of spent coffee grounds constant, the sinking of coffee ground particles in solution and shrinking effect on the aerogels are minimized and the overall mechanical and oil absorption properties are improved. The developed hybrid aerogels possess high porosity of 92-95% and super-hydrophobicity with an average water contact angle of 139°. Oil absorption capacity achieves 16 g/g with 0.50 wt.% of cotton fibers inside the coffee aerogel. Their thermal conductivity is in the range of 0.037-0.045 W/mK and compressive Young's modulus achieves highest at 15.6 kPa. The properties of the hybrid aerogel indicate it as a potential material in several applications such as thermal insulation, oil absorption and filtration.

4.
Gels ; 4(2)2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30674819

RESUMEN

This work presents for the first time, a simple, practical and scalable approach to fabricating recycled polyethylene terephthalate (rPET) aerogels for thermal and acoustic insulation applications. The rPET aerogels were successfully developed from recycled PET fibers and polyvinyl alcohol (PVA) and glutaraldehyde (GA) cross-linkers using a freeze-drying process. The effects of various PET fiber concentrations (0.5, 1.0 and 2.0 by wt.%), fiber deniers (3D, 7D and 15D) and fiber lengths (32 mm and 64 mm) on the rPET aerogel structures and multi-properties were comprehensively investigated. The developed rPET aerogels showed a highly porous network structure (98.3⁻99.5%), ultra-low densities (0.007⁻0.026 g/cm³), hydrophobicity with water contact angles of 120.7⁻149.8°, and high elasticity with low compressive Young's modulus (1.16⁻2.87 kPa). They exhibited superior thermal insulation capability with low thermal conductivities of 0.035⁻0.038 W/m.K, which are highly competitive with recycled cellulose and silica-cellulose aerogels and better than mineral wool and polystyrene. The acoustic absorption results were also found to outperform a commercial acoustic foam absorber across a range of frequencies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA