Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(9): 543, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153033

RESUMEN

A nanohybrid-modified glassy carbon electrode based on conducting polypyrrole doped with carbon quantum dots (QDs) was developed and used for the electrochemical detection of anti-tissue transglutaminase (anti-tTG) antibodies. To improve the polypyrrole conductivity, carrier mobility, and carrier concentration, four types of carbon nanoparticles were tested. Furthermore, a polypyrrole-modified electrode doped with QDs was functionalized with a PAMAM dendrimer and transglutaminase 2 protein by cross-linking with N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The steps of electrode surface modification were surveyed via electrochemical measurements (differential pulse voltammetry (DPV), impedance spectroscopy, and X-ray photoelectron spectroscopy (XPS)). The surface characteristics were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurements. The obtained modified electrode exhibited good stability and repeatability. DPV between - 0.1 and 0.6 V (vs. Ag/AgCl 3 M KCl reference electrode) was used to evaluate the electrochemical alterations that occur after the antibody interacts with the antigen (transglutaminase 2 protein), for which the limit of detection was 0.79 U/mL. Without the use of a secondary label, (anti-tTG) antibodies may be detected at low concentrations because of these modified electrode features.


Asunto(s)
Dendrímeros , Proteína Glutamina Gamma Glutamiltransferasa 2 , Pirroles , Puntos Cuánticos , Transglutaminasas , Humanos , Anticuerpos/inmunología , Anticuerpos/química , Técnicas Biosensibles/métodos , Carbono/química , Dendrímeros/química , Técnicas Electroquímicas/métodos , Electrodos , Proteínas de Unión al GTP/inmunología , Polímeros/química , Pirroles/química , Puntos Cuánticos/química , Transglutaminasas/inmunología , Transglutaminasas/química
2.
RSC Adv ; 13(21): 14543-14553, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188252

RESUMEN

Activated carbons have been previously produced from a huge variety of biomaterials often reporting advantages of using certain precursors. Here we used pine cones, spruce cones, larch cones and a pine bark/wood chip mixture to produce activated carbons in order to verify the influence of the precursor on properties of the final materials. The biochars were converted into activated carbons with extremely high BET surface area up to ∼3500 m2 g-1 (among the highest reported) using identical carbonization and KOH activation procedures. The activated carbons produced from all precursors demonstrated similar specific surface area (SSA), pore size distribution and performance to electrodes in supercapacitors. Activated carbons produced from wood waste appeared to be also very similar to "activated graphene" prepared by the same KOH procedure. Hydrogen sorption of AC follows expected uptake vs. SSA trends and energy storage parameters of supercapacitor electrodes prepared from AC are very similar for all tested precursors. It can be concluded that the type of precursor (biomaterial or reduced graphene oxide) has smaller importance for producing high surface area activated carbons compared to details of carbonization and activation. Nearly all kinds of wood waste provided by the forest industry can possibly be converted into high quality AC suitable for preparation of electrode materials.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35159693

RESUMEN

Our work presents, for the first time, a comprehensive study of the synthesis of fully metallic platinum nanoparticles (Pt-NPs) involving the ablation process in double distilled water using a KrF excimer laser. To obtain detailed information on Pt-NP morphology and optical properties, prepared colloids were characterized using High Resolution Scanning Transmission Electron Microscopy (HR-STEM) with advanced capabilities for Energy Dispersive X-ray Analysis (EDX), UV/Vis optical spectroscopy, and Direct Analysis in Real Time-Mass Spectrometry (DART-MS). The influence of the applied laser fluence and laser repetition rate (RR) values on the characteristics of the obtained Pt-NPs and the ablation process, respectively, were also analyzed. Spherical and spherical-like nanoparticles exhibiting aggregation were produced. The Pt-NP mean size values were between 2.2 ± 1.2 nm and 4.0 ± 1.0 nm, while their interplanar distance measurements showed a face-centered cubic (FFC) Pt lattice (111), as revealed by HR-STEM measurements, for all investigated samples. The smallest mean size of 2.2 nm of the Pt-NPs was obtained using a 2.3 J cm-2 laser fluence at a 10 Hz RR, and the narrowest size distribution of the NPs was obtained with a 2.3 J cm-2 laser fluence at a 40 Hz RR. A linear dependence of the Pt-NP diameters versus the laser repetition rate was found at a constant fluence of 2.3 J cm-2. The proposed eco-friendly synthesis route of Pt-NPs, because of its relative simplicity, has the potential for use in industrial production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA