Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AMB Express ; 8(1): 64, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679312

RESUMEN

ß-Lactamase inhibitory protein (BLIP), a low molecular weight protein from Streptomyces clavuligerus, has a wide range of potential applications in the fields of biotechnology and pharmaceutical industry because of its tight interaction with and potent inhibition on clinically important class A ß-lactamases. To meet the demands for considerable amount of highly pure BLIP, this study aimed at developing an efficient expression system in eukaryotic Pichia pastoris (a methylotrophic yeast) for production of BLIP. With methanol induction, recombinant BLIP was overexpressed in P. pastoris X-33 and secreted into the culture medium. A high yield of ~ 300 mg/L culture secretory BLIP recovered from the culture supernatant without purification was found to be > 90% purity. The recombinant BLIP was fully active and showed an inhibition constant (Ki) for TEM-1 ß-lactamase (0.55 ± 0.07 nM) comparable to that of the native S. clavuligerus-expressed BLIP (0.5 nM). Yeast-produced BLIP in combination with ampicillin effectively inhibited the growth of ß-lactamase-producing Gram-positive Bacillus. Our approach of expressing secretory BLIP in P. pastoris gave 71- to 1200-fold more BLIP with high purity than the other conventional methods, allowing efficient production of large amount of highly pure BLIP, which merits fundamental science studies, drug development and biotechnological applications.

2.
Appl Biochem Biotechnol ; 113-116: 361-72, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15054263

RESUMEN

Plastic wastes constitute a worldwide environmental problem, and the demand for biodegradable plastics has become high. One of the most important characteristics of microbial polyesters is that they are thermoplastic with environmentally degradable properties. In this study, pUC19/PHA was cloned and transformed into three different Escherichia coli strains. Among the three strains that were successfully expressed in the production of polyhydroxyalkanoates (PHA), E. coli HMS174 had the highest yield in the production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (P[HB-HV]). The cell dry weight and PHA content of recombinant HMS174 reached as high as 10.27 g/L and 43% (w/w), respectively, in fed-batch fermentor culture. The copolymer of PHA, P(HB-HV), was found in the cells, and the biopolymers accumulated were identified and analyzed by gas chromatography, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. We demonstrated clearly that the E. coli host for PHA production has to be carefully selected to obtain a high yield. The results obtained indicated that a superior E. coli with high PHA production can be constructed with a desirable ratio of P(HB-HV), which has potential applications in industry and medicine.


Asunto(s)
Biotecnología/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Poliésteres/química , Biodegradación Ambiental , Rastreo Diferencial de Calorimetría , Carbono/química , Cromatografía de Gases , Fermentación , Espectroscopía de Resonancia Magnética , Plásmidos/metabolismo , Plásticos , Poliésteres/metabolismo , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA