Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 9: 948567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747236

RESUMEN

[This corrects the article DOI: 10.3389/fvets.2022.788289.].

2.
Front Vet Sci ; 9: 788289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573409

RESUMEN

Debates around fishes' ability to feel pain concern sentience: do reactions to tissue damage indicate evaluative consciousness (conscious affect), or mere nociception? Thanks to Braithwaite's discovery of trout nociceptors, and concerns that current practices could compromise welfare in countless fish, this issue's importance is beyond dispute. However, nociceptors are merely necessary, not sufficient, for true pain, and many measures held to indicate sentience have the same problem. The question of whether fish feel pain - or indeed anything at all - therefore stimulates sometimes polarized debate. Here, we try to bridge the divide. After reviewing key consciousness concepts, we identify "red herring" measures that should not be used to infer sentience because also present in non-sentient organisms, notably those lacking nervous systems, like plants and protozoa (P); spines disconnected from brains (S); decerebrate mammals and birds (D); and humans in unaware states (U). These "S.P.U.D. subjects" can show approach/withdrawal; react with apparent emotion; change their reactivity with food deprivation or analgesia; discriminate between stimuli; display Pavlovian learning, including some forms of trace conditioning; and even learn simple instrumental responses. Consequently, none of these responses are good indicators of sentience. Potentially more valid are aspects of working memory, operant conditioning, the self-report of state, and forms of higher order cognition. We suggest new experiments on humans to test these hypotheses, as well as modifications to tests for "mental time travel" and self-awareness (e.g., mirror self-recognition) that could allow these to now probe sentience (since currently they reflect perceptual rather than evaluative, affective aspects of consciousness). Because "bullet-proof" neurological and behavioral indicators of sentience are thus still lacking, agnosticism about fish sentience remains widespread. To end, we address how to balance such doubts with welfare protection, discussing concerns raised by key skeptics in this debate. Overall, we celebrate the rigorous evidential standards required by those unconvinced that fish are sentient; laud the compassion and ethical rigor shown by those advocating for welfare protections; and seek to show how precautionary principles still support protecting fish from physical harm.

3.
Isotopes Environ Health Stud ; 41(1): 31-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15823855

RESUMEN

Treatment of wastewater generally results in elevated natural 15N abundance (delta15N) in the effluent and sludges. For example, high delta15N values are found in treated sewage effluent, biosolids, and other wastes that are commonly applied to land. In contrast, N deficient coniferous forest soils usually have a low delta15N. When wastes with high delta15N values are applied to land, their distinctive delta15N signature can potentially be used to trace the fate of waste-derived N in the ecosystem. In this paper, we provide an overview of the use of delta15N in land application of wastes, including New Zealand case studies on tracing nitrogen in forest ecosystems.


Asunto(s)
Ecosistema , Isótopos de Nitrógeno/análisis , Nitrógeno/metabolismo , Eliminación de Residuos , Árboles/fisiología , Nueva Zelanda , Aguas del Alcantarillado/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA