RESUMEN
α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.
Asunto(s)
Tamaño de la Célula , Eritrocitos/citología , Eritrocitos/fisiología , Proteínas de Escherichia coli/farmacología , Proteínas Hemolisinas/farmacología , Modelos Biológicos , Adenosina Trifosfato/metabolismo , Biomarcadores , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Relación Dosis-Respuesta a Droga , Proteínas de Escherichia coli/inmunología , Proteínas Hemolisinas/inmunología , Hemólisis , Interacciones Huésped-Patógeno , Humanos , Cinética , PermeabilidadRESUMEN
Alpha hemolysin (HlyA) is the major virulence factor of uropathogenic Escherichia coli (UPEC) strains. Once in circulation, a low concentration of the toxin induces an increase in intracellular calcium that activates calpains - which proteolyse cytoskeleton proteins - and also favours the exposure of phosphatidylserine (PS) in the outer leaflet of erythrocyte membranes. All these events are considered part of eryptosis, as well as the delivery of microvesicles (MVs). Within this context, we studied the delivery of MVs by erythrocytes treated with sublytic concentrations of HlyA and demonstrated that HlyA-treated erythrocytes secrete MVs of diameter â¼200â nm containing HlyA and PS by a mechanism involving an increment of intracellular calcium concentration and purinergic receptor activation. Despite the presence of toxin in their membrane, HlyA-MVs are not hemolytically active and do not induce ATP release in untreated erythrocytes, thus suggesting that the delivery of HlyA-MVs might act as a protective mechanism on the part of erythrocytes that removes the toxin from the membrane to prevent the spread of infection. Although erythrocytes have been found to eliminate denatured hemoglobin and several membrane proteins by shedding MVs, the present work has revealed for the first time that an exogenous protein, such as a toxin, is eliminated by this process. This finding sheds light on the mechanism of action of the toxin and serves to further elucidate the consequences of UPEC infection in patients exhibiting HlyA-related diseases.
Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Eritrocitos/efectos de los fármacos , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/toxicidad , Proteínas Hemolisinas/toxicidad , Micropartículas Derivadas de Células/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/metabolismo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/fisiopatología , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Fosfatidilserinas/metabolismoRESUMEN
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasiteâ»host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
RESUMEN
We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1-1⠵M). Exposure to MST7 and MEL enhanced ATP release by 3-7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6-7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.
Asunto(s)
Adenosina Trifosfato/metabolismo , Enterocitos/metabolismo , Escherichia coli/fisiología , Vesículas Extracelulares/metabolismo , Yeyuno/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Células CACO-2 , Técnicas de Cocultivo , Enterocitos/ultraestructura , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/metabolismo , Vesículas Extracelulares/ultraestructura , Interacciones Huésped-Patógeno , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intercelular , Yeyuno/ultraestructura , Cinética , Luminiscencia , Meliteno/metabolismo , Microscopía Electrónica , Péptidos , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas WistarRESUMEN
INTRODUCTION: The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. METHODS AND TREATMENTS: We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. RESULTS: In rbcs 10 µM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 µM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40-50% and swelling by 40-60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 µM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. ANALYSIS AND DISCUSSION: Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.