Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 11: 467, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28983243

RESUMEN

Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject's evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions-from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.

2.
Behav Brain Res ; 253: 1-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23827203

RESUMEN

Long-term effects of learned associations between an image and a taste have not been studied with electromagnetic brain scanning techniques. The possibility that taste conditioning may change sensory image processing was investigated in young adult subjects. EEG-responses evoked by images were recorded before and after a training session using an image as conditioned stimulus and a pleasant taste as unconditioned stimulus. The results showed that in posterior electrodes placed over visual cortex areas, the following changes occurred after conditioning: (1) the amplitude and duration of the N2-P3 waves in the visual evoked potentials were enhanced; (2) the N2 and P3 peak delays were shortened; (3) power induced by image presentation was enhanced in the delta and theta frequency bands; (4) cross-hemispheric delta and theta coherences among the posterior electrodes were enhanced; (5) calculations of the underlying whole brain distribution of currents using swLORETA showed elevated current densities in posterior voxels. None of the above changes occurred in a sham-trained control group. In electrodes placed over the prefrontal cortex, delta and theta power also rose significantly. It is suggested that the appetitive taste conditioning potentiated synaptic activity in visual cortex networks and that this led to an increased speed of image processing.


Asunto(s)
Apetito/fisiología , Condicionamiento Clásico/fisiología , Electroencefalografía , Potenciales Evocados Visuales/fisiología , Gusto/fisiología , Adulto , Interpretación Estadística de Datos , Ritmo Delta , Electrodos , Electrooculografía , Femenino , Humanos , Masculino , Estimulación Luminosa , Ritmo Teta , Adulto Joven
3.
Interface Focus ; 1(1): 132-42, 2011 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22419979

RESUMEN

The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period-doubling bifurcations, mode-locking and other nonlinear dynamic phenomena in the tubular pressures and flows. Using a simplified nephron model, the paper examines how the regulatory mechanisms react to an external periodic variation in arterial pressure near a region of resonance with one of the internally generated mode-locked cycles. We show how the stable and unstable resonance cycles generated in this response undergo interconnected cascades of period-doubling bifurcations and how each period doubling leads to the formation of a new pair of saddle-node bifurcation curves along the edges of the resonance zone. We also show how period doubling of the resonance cycles is accompanied by a torus-doubling process in the quasiperiodic regime that exists outside of the resonance zone.

4.
Am J Physiol Regul Integr Comp Physiol ; 298(4): R997-R1006, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20147606

RESUMEN

Tubular pressure and nephron blood flow time series display two interacting oscillations in rats with normal blood pressure. Tubuloglomerular feedback (TGF) senses NaCl concentration in tubular fluid at the macula densa, adjusts vascular resistance of the nephron's afferent arteriole, and generates the slower, larger-amplitude oscillations (0.02-0.04 Hz). The faster smaller oscillations (0.1-0.2 Hz) result from spontaneous contractions of vascular smooth muscle triggered by cyclic variations in membrane electrical potential. The two mechanisms interact in each nephron and combine to act as a high-pass filter, adjusting diameter of the afferent arteriole to limit changes of glomerular pressure caused by fluctuations of blood pressure. The oscillations become irregular in animals with chronic high blood pressure. TGF feedback gain is increased in hypertensive rats, leading to a stronger interaction between the two mechanisms. With a mathematical model that simulates tubular and arteriolar dynamics, we tested whether an increase in the interaction between TGF and the myogenic mechanism can cause the transition from periodic to irregular dynamics. A one-dimensional bifurcation analysis, using the coefficient that couples TGF and the myogenic mechanism as a bifurcation parameter, shows some regions with chaotic dynamics. With two nephrons coupled electrotonically, the chaotic regions become larger. The results support the hypothesis that increased oscillator interactions contribute to the transition to irregular fluctuations, especially when neighboring nephrons are coupled, which is the case in vivo.


Asunto(s)
Presión Sanguínea/fisiología , Potenciales de la Membrana/fisiología , Nefronas/fisiología , Circulación Renal/fisiología , Animales , Arteriolas/fisiología , Velocidad del Flujo Sanguíneo , Modelos Animales de Enfermedad , Retroalimentación , Homeostasis/fisiología , Hipertensión/fisiopatología , Glomérulos Renales/fisiología , Túbulos Renales/irrigación sanguínea , Túbulos Renales/fisiología , Modelos Biológicos , Oscilometría , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA