Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 16(1): 79, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409165

RESUMEN

BACKGROUND: Insulin signaling pathway in ß-cell is essential to promote ß-cells proliferation and survival, while Nodal-ALK7-Smad3 signaling involves ß-cells apoptosis. We attempted to address inter-relationship between Nodal and insulin in modulating ß-cell proliferation and apoptosis. METHODS: Using INS-1 ß-cells and isolated rat islets, we examined the effects of Nodal, insulin, or the two combined on ß-cell proliferation and/or apoptosis. RESULTS: The ß-cells under high-glucose or palmitate conditions showed significant up-regulation of Nodal expression and activation of its downstream signaling pathway resulted in increased cleaved caspase-3. Insulin treatment led to significantly attenuated Nodal-induced cell apoptotic pathway. Similar results were found in directly Nodal-treated ß-cell that insulin could partially block Nodal-induced up-regulation of ALK7-Smad3-caspase-3 signaling pathways with significantly attenuated ß-cell apoptosis. Interestingly, we found that insulin-induced Akt activation and downstream molecules including GSK-3ß, ß-catenin and ERK1/2 was significantly attenuated by the co-treatment with Nodal, resulted in decreased cell proliferation. Furthermore, Nodal decreased glucose-evoked calcium influx and played a negative role during glucose-stimulated insulin secretion in the ß-cells. Immunocytochemistry studies showed that Nodal treatment translocated Smad3 from cytosol mostly to the nucleus; however, co-treatment with insulin significantly decreased Smad3 nuclear localization. Co-immunoprecipitation experiments showed a directly interaction between Smad3 and Akt, and this interaction was enhanced by co-treatment with insulin. CONCLUSIONS: Our data suggest that the antagonistic interaction between Nodal and insulin has a role in the regulation of ß-cell mass and secretion.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/farmacología , Proteína Nodal/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Receptores de Activinas Tipo I/metabolismo , Animales , Apoptosis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Interacciones Farmacológicas , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ácido Palmítico/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteína smad3/metabolismo , beta Catenina/metabolismo
2.
Front Pharmacol ; 8: 362, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676760

RESUMEN

γ-aminobutyric acid (GABA) or glucagon-like peptide-1 based drugs, such as sitagliptin (a dipeptidyl peptidase-4 inhibitor), were shown to induce beta cell regenerative effects in various diabetic mouse models. We propose that their combined administration can bring forth an additive therapeutic effect. We tested this hypothesis in a multiple low-dose streptozotocin (STZ)-induced beta cell injury mouse model (MDSD). Male C57BL/6J mice were assigned randomly into four groups: non-treatment diabetic control, GABA, sitagliptin, or GABA plus sitagliptin. Oral drug administration was initiated 1 week before STZ injection and maintained for 6 weeks. GABA or sitagliptin administration decreased ambient blood glucose levels and improved the glucose excursion rate. This was associated with elevated plasma insulin and reduced plasma glucagon levels. Importantly, combined use of GABA and sitagliptin significantly enhanced these effects as compared with each of the monotherapies. An additive effect on reducing water consumption was also observed. Immunohistochemical analyses revealed that combined GABA and sitagliptin therapy was superior in increasing beta cell mass, associated with increased small-size islet numbers, Ki67+ and PDX-1+ beta cell counts; and reduced Tunel+ beta cell counts. Thus, beta cell proliferation was increased, whereas apoptosis was reduced. We also noticed a suppressive effect of GABA or sitagliptin on alpha cell mass, which was not significantly altered by combining the two agents. Although either GABA or sitagliptin administration delays the onset of MDSD, our study indicates that combined use of them produces superior therapeutic outcomes. This is likely due to an amelioration of beta cell proliferation and a decrease of beta cell apoptosis.

3.
Front Physiol ; 8: 15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194113

RESUMEN

Cardiovascular disease is a common co-morbidity and leading cause of death in patients with type 2 diabetes mellitus (T2DM). Glucagon-like peptide 1 (GLP-1) is a peptide hormone produced by intestinal L cells in response to feeding. Native GLP-1 (7-36) amide is rapidly degraded by diaminopeptidyl peptidase-4 (DPP4) to GLP-1 (9-36) amide, making 9-36a the major circulating form. While it is 7-36a, and not its metabolites, which exerts trophic effects on islet ß-cells, recent studies suggest that both 7-36a and its metabolites have direct cardiovascular effects, including preserving cardiomyocyte viability, ameliorating cardiac function, and vasodilation. In particular, the difference in cardiovascular effects between 7-36a and 9-36a is attracting attention. Growing evidence has strengthened the presumption that their cardiovascular effects are overlapping, but distinct and complementary to each other; 7-36a exerts cardiovascular effects in a GLP-1 receptor (GLP-1R) dependent pathway, whereas 9-36a does so in a GLP-1R independent pathway. GLP-1 therapies have been developed using two main strategies: DPP4-resistant GLP-1 analogs/GLP-1R agonists and DPP4 inhibitors, which both aim to prolong the life-time of circulating 7-36a. One prominent concern that should be addressed is that the cardiovascular benefits of 9-36a are lacking in these strategies. This review attempts to differentiate the cardiovascular effects between 7-36a and 9-36a in order to provide new insights into GLP-1 physiology, and facilitate our efforts to develop a superior GLP-1-therapy strategy for T2DM and cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA