Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JASA Express Lett ; 3(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486289

RESUMEN

A ventilated acoustic metasurface consisting of a membrane covered with a combination of different depth sub-chambers is proposed. It can achieve at least a 5 dB sound insulation acoustic performance in the wide frequency range from 100 to 1700 Hz, in particular a 10 dB noise reduction in the range from 100 to 200 Hz and from 437.4 to 1700 Hz, which can therefore cover the low-frequency range of the environmental noise. The physical mechanism of membrane-acoustic coupling for noise reduction in the low-frequency range is further explored.

2.
Sci Robot ; 5(47)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115886

RESUMEN

A winged drone demonstrates aggressive and agile flight by morphing its wings and tail.

3.
Sci Robot ; 5(44)2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-33022610

RESUMEN

The aerobatic maneuvers of swifts could be very useful for micro aerial vehicle missions. Rapid arrests and turns would allow flight in cluttered and unstructured spaces. However, these decelerating aerobatic maneuvers have been difficult to demonstrate in flapping wing craft to date because of limited thrust and control authority. Here, we report a 26-gram X-wing ornithopter of 200-millimeter fuselage length capable of multimodal flight. Using tail elevation and high thrust, the ornithopter was piloted to hover, fly fast forward (dart), turn aerobatically, and dive with smooth transitions. The aerobatic turn was achieved within a 32-millimeter radius by stopping a dart with a maximum deceleration of 31.4 meters per second squared. In this soaring maneuver, braking was possible by rapid body pitch and dynamic stall of wings at relatively high air speed. This ornithopter can recover to glide stability without tumbling after a 90-degree body flip. We showed that the tail presented a strong stabilizing moment under high thrust, whereas the wing membrane flexibility alleviated the destabilizing effect of the forewings. To achieve these demands for high thrust, we developed a low-loss anti-whirl transmission that maximized thrust output by the flapping wings to 40 grams in excess of body weight. By reducing the reactive load and whirl, this indirect drive consumed 40% less maximum electrical power for the same thrust generation than direct drive of a propeller. The triple roles of flapping wings for propulsion, lift, and drag enable the performance of aggressive flight by simple tail control.

4.
Appl Opt ; 59(12): 3792-3798, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32400507

RESUMEN

A laser Doppler vibrometer (LDV) is precise and fast in measuring the translational velocity of a vibrating diffuse surface. However, it could fail to measure the tangential velocity of a rotating mirror. While the specular reflection away from the mirror can be recovered by a retroreflective collector, the recovered LDV reading is found to deviate from the true tangential velocity of the probed scanning mirror. This happens because the probed spot shifts radially along the rotating mirror surface and thus introduces extra Doppler shift, while the laser beam is aimed at a constant height on the scanning mirror. Here, we derive an analytical relationship between the laser Doppler shift and the tangential velocity of the measured spot. With the input of the prescribed scan profile, we recover the true reading of tangential velocity of the scanning mirror even at a large rotational angle. This corrected LDV reading is as precise as the measurement by a high-speed camera.

5.
Appl Opt ; 58(9): 2277-2283, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31044922

RESUMEN

A laser Doppler vibrometer (LDV) fails to measure a large out-of-plane vibration of a rotating mirror when the mirror obliquely reflects the laser beam away, causing a signal loss from being detected. To solve this problem, an external retroreflective tape was used to recover the oblique reflection. However, the reading of LDV obtained from the recovered signal is not right because the retroreflection adds extra Doppler frequency shifts to the oblique reflection. Here, we first derive the relationship of Doppler shift to the oblique angle of retroreflection. For the first time with the help of retroreflection, a standard LDV can measure the largely vibrating mirror as well as a high-speed camera, albeit without the need for heavy computation.

6.
ACS Appl Mater Interfaces ; 10(46): 39942-39951, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30365298

RESUMEN

Window glasses can block noise from outdoor, but they reverberate sound within a large indoor space. Microperforated glass absorbers have been developed to absorb sound over a fixed but narrow bandwidth. To tune the frequency spectrum of acoustic absorption, we developed a transparent tunable acoustic absorber based on microperforated dielectric elastomer actuator (MPDEA) and transparent compliant electrodes. Such transparent compliant electrodes were inkjet printed from Triton X-plasticized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ink, which shows improved wettability on the acrylate dielectric elastomer substrate. These transparent polymeric electrodes are softer with uptake of moisture while being self-clearable and durable. A single layer of MPDEA using two inkjet-printed electrodes is 78.64% clear, but the clarity of a two-layer MPDEA decreases to 61.8%. Among the two designs, the two-layer MPDEA exhibits a broader acoustic absorption bandwidth of 444 Hz for absorbing more than 80% of the sound energy. Inactivated resonant frequency of this MPDEA is 1170 Hz, whereas the 6 kV activation can reduce the resonant frequency for 15.2% by causing 9% hole-diameter contraction. This transparent tunable acoustic absorber can be fitted to window glass; its acoustic performance is better than that of translucent curtains.

7.
Opt Lett ; 41(19): 4433-4436, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27749848

RESUMEN

This Letter presents a tunable window device based on microscopic wrinkling of a transparent elastomeric surface. "Crack-free" microscopic wrinkling of a 50-nm ZnO thin film is possible on a highly adhesive acrylic elastomer membrane (VHB 4910) upon partial release from a large radial pre-stretch of membrane. This ZnO-based tunable window device demonstrates reversible tunability between transparent and translucent states. At zero compression with a flat surface, the device is transparent with a 93% in-line transmittance at 550-nm wavelength. At 14% radial compression with wrinkled surface, the device appears translucent with a 3% in-line transmittance. Analysis shows that a large amplitude and a small wavelength of transparent micro-wrinkles are good for refracting light diffusely. This method and material system are promising to make a low-cost, high-performance smart window.

8.
Artículo en Inglés | MEDLINE | ID: mdl-16471427

RESUMEN

This paper presents both theoretical and numerical analyses of the piezoelectric and dielectric responses of a highly idealized film-on-substrate system, namely, a polarized ferroelectric film perfectly bonded to an elastic silicon substrate. It shows that both effective dielectric and piezoelectric properties of the films change with the size and configuration of the test capacitor. There exists a critical electrode size that is smaller than the diameter of the commonly used substrate. The effective film properties converge to their respective constrained values as capacitor size increases to the critical size. If capacitor size is smaller than the critical size, the surface displacement at the top electrode deviates from the net thickness change in response to an applied voltage because the film is deformable at the film/substrate interface. The constrained properties of the films depend only on those of bulk ferroelectrics but are independent of film thickness and substrate properties. The finding of the critical capacitor size together with analytical expressions of the constrained properties makes it possible to realize consistent measurement of piezoelectric and dielectric properties of films. A surface scanning technique is recommended to measure the profile of piezoresponses of the film so that the constrained properties of the film can be identified accurately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA