Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 55(19): 5754-9, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27059261

RESUMEN

Organocobalt complexes represent a versatile tool in organic synthesis as they are important intermediates in Pauson-Khand, Friedel-Crafts, and Nicholas reactions. Herein, a single-molecule-level investigation addressing the formation of an organocobalt complex at a solid-vacuum interface is reported. Deposition of 4,4'-(ethyne-1,2-diyl)dibenzonitrile and Co atoms on the Ag(111) surface followed by annealing resulted in genuine complexes in which single Co atoms laterally coordinated to two carbonitrile groups undergo organometallic bonding with the internal alkyne moiety of adjacent molecules. Alternative complexation scenarios involving fragmentation of the precursor were ruled out by complementary X-ray photoelectron spectroscopy. According to density functional theory analysis, the complexation with the alkyne moiety follows the Dewar-Chatt-Duncanson model for a two-electron-donor ligand where an alkyne-to-Co donation occurs together with a strong metal-to-alkyne back-donation.

2.
ACS Nano ; 10(2): 2010-6, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26812093

RESUMEN

Single-molecule chemistry with a scanning tunneling microscope has preponderantly been performed on metal surfaces. The molecule-metal hybridization, however, is often detrimental to genuine molecular properties and obscures their changes upon chemical reactions. We used graphene on Ir(111) to reduce the coupling between Ir(111) and adsorbed phthalocyanine molecules. By local electron injection from the tip of a scanning tunneling microscope the two pyrrolic H atoms were removed from single phthalocyanines. The detachment of the H atom pair induced a strong modification of the molecular electronic structure, albeit with no change in the adsorption geometry. Spectra and maps of the differential conductance combined with density functional calculations unveiled the entire depopulation of the highest occupied molecular orbital upon H abstraction. Occupied π states of intact molecules are proposed to be emptied via intramolecular electron transfer to dangling σ states of H-free N atoms.

3.
J Am Chem Soc ; 137(29): 9452-8, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26147789

RESUMEN

Iron phthalocyanine (FePc) is adsorbed to graphene on Ir(111) at cryogenic temperature. In addition to mobile FePc with four lobes, imaging and spectroscopy with a scanning tunneling microscope reveal immobile molecules that exhibit fewer lobes. A reversible transformation between four- and three-lobed molecules has been induced by current injection. The data are consistent with chemical bonding of lobes to graphene on Ir, pinning down the graphene area toward Ir. Similar observations are made from NiPc, CoPc, CuPc, and H2Pc. The experimental findings can be explained by ab initio calculations, which suggest that a Diels-Alder-type reaction may be involved with an allyl unit of graphene in the top-fcc moiré registry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA