Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immunology ; 170(2): 270-285, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37340549

RESUMEN

BRCA1 mutation is reported in about 70% of all triple negative breast cancers (TNBC), while BRCA1 defect due to promoter hypermethylation is seen in about 30%-60% of sporadic breast cancers. Although PARP inhibitors and platinum-based chemotherapy are used to treat these cancers, more efficient therapeutic approaches are required to overcome the resistance to treatment. Our previous findings have reported elevated ßhCG expression but not αhCG in BRCA1 deficient breast cancers. As ßhCG causes immune suppression in pregnancy, this study explored the immunomodulatory effect of ßhCG in BRCA1mutated/deficient TNBC. We observed that Th1, Th2, and Th17 cytokines are upregulated in the presence of ßhCG in BRCA1 defective cancers. In NOD-SCID and syngeneic mouse models, ßhCG increases the frequency of Myeloid-derived suppressor cells in tumour tissues and contributes to macrophage reprogramming from antitumor M1 to pro-tumour M2 phenotype. ßhCG reduces the CD4+ T-cell infiltration while increasing the density of CD4+ CD25+ FOXP3+ regulatory T-cell in BRCA1 deficient tumour tissues. In contrast, xenograft tumours with ßhCG knocked down TNBC cells did not show these immune suppressive effects. We have also shown that ßhCG upregulates pro-tumorigenic markers arginase1(Arg1), inducible nitric oxide synthase, PD-L1/PD-1, and NFκB in BRCA1 defective tumours. Thus, for the first time, this study proves that ßhCG suppresses the host antitumor immune response and contributes to tumour progression in BRCA1 deficient tumours. This study will help develop new immunotherapeutic approaches for treating BRCA1 defective TNBC by regulating ßhCG.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Linfocitos T Reguladores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba , Ratones SCID , Macrófagos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo
2.
Am J Cancer Res ; 12(1): 17-47, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141003

RESUMEN

BRCA1 mutation carriers have a greater risk of developing cancers in hormone-responsive tissues like breasts and ovaries. However, this tissue-specific incidence of BRCA1 related cancers remains elusive. The majority of the BRCA1 mutated breast cancers exhibit typical histopathological features of high-grade tumors, with basal epithelial phenotype, classified as triple-negative molecular subtype and have a higher percentage of DNA damage and chromosomal abnormality. Though there are many studies relating BRCA1 with ER-α (Estrogen receptor-α), it has not been reported whether E2 (Estrogen) -ER-α signaling can modulate the DNA repair activities of BRCA1. The present study analyzes whether deregulation of ER-α signaling, arising as a result of E2/ER-α deficiency, could impact the BRCA1 dependent DDR (DNA Damage Response) pathways, predominantly those of DNA-DSB (Double Strand break) repair and oxidative damage response. We demonstrate that E2/E2-stimulated ER-α can augment BRCA1 mediated high fidelity repairs like HRR (Homologous Recombination Repair) and BER (Base Excision Repair) in breast cancer cells. Conversely, a condition of ER-α deficiency itself or any interruption in ligand-dependent ER-α transactivation resulted in delayed DNA damage repair, leading to persistent activation of γH2AX and retention of unrepaired DNA lesions, thereby triggering tumor progression. ER-α deficiency not only limited the HRR in cells but also facilitated the DSB repair through error prone pathways like NHEJ (Non Homologous End Joining). ER-α deficiency associated persistence of DNA lesions and reduced expression of DDR proteins were validated in human mammary tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA