Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Inst Mech Eng H ; 236(9): 1349-1356, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821656

RESUMEN

The study was designed to establish a biomechanical assessment platform for the lower limb residuum/socket interface as a function of duration and speed of movement. The approach exploits an interface sensor which measures multi-directional stresses at the interface. The corresponding interface coupling motion was assessed using a 3D motion capture system. A longitudinal study, involving a trans-femoral amputee, was conducted with nine repeated level walking sessions over a 12-month period. The effect of walking speed on interface biomechanics was also assessed. Interface peak pressures and shear stresses in the range of 55-59 kPa and 12-19 kPa were measured, respectively, over all sessions in the 12 months study period at the posterior-proximal location of the residuum. The peak pressure and longitudinal shear values were found to fluctuate approximately 11% and 40% as against its maximum value, respectively, over 12 months. In addition, up to 12° of angular coupling and up to 28 mm of pistoning were recorded over a gait cycle, which was found to change by 29% and 45% respectively over the study period. The variation in walking speed, by altering self-selected cadence, resulted in changes of pressure and shear stresses at mid-stance of the gait cycle. In particular, as compared with self-selected cadence, for fast speed, peak pressure and peak longitudinal shear stress decreased by 5% and 33%, respectively. For slow speed, peak pressure and peak longitudinal shear stress increased by 7% and 17%, respectively. The corresponding angular and pistoning revealed a variation of up to 29% and 45%, respectively. This biomechanical assessment approach shows promise in the quantitative assessment of interface kinematics and kinetics for lower limb prosthetics, the usage of which could assist the clinical assessment of prosthetic socket fit.


Asunto(s)
Amputados , Miembros Artificiales , Muñones de Amputación , Fenómenos Biomecánicos , Marcha , Humanos , Estudios Longitudinales , Extremidad Inferior , Diseño de Prótesis
2.
J Rehabil Assist Technol Eng ; 5: 2055668318790650, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31191949

RESUMEN

INTRODUCTION: Asymmetrical limb loading is believed to cause health problems for lower limb amputees and is exacerbated when walking on slopes. Hydraulically damped ankle-feet improve ground compliance on slopes compared to conventional prosthetic feet. Microprocessor-controlled hydraulic ankle-feet provide further adaptation by dynamically adjusting viscoelastic damping properties. METHOD: Using a case series design, gait analysis was performed with four trans-tibial amputees. There were two walking conditions (ramp ascent and descent) and two prosthetic foot conditions (microprocessor-control on and off - MPF-on and MPF-off). Total support moment integral ( M I sup ) and degree-of-asymmetry were compared across foot conditions. RESULTS: During ramp descent, the transition of prosthetic ankle moment from dorsiflexion to plantarflexion occurred earlier in stance phase with MPF-on, slowing the angular velocity of the shank. During ramp ascent, the MPF-on dorsiflexion/plantarflexion moment transition occurred later, meaning less resistance to shank rotation in early stance and increasing walking speed by up to 6%. For both slope conditions, sound limb M I sup was universally decreased with MPF-on (4-13% descent, 3-11% ascent). DISCUSSION: Microprocessor-control of hydraulic ankle-feet reduced the total loading of the sound limb joints, for both walking conditions, for all participants. This may have beneficial consequences for long-term joint health and walking efficiency.

3.
J Rehabil Assist Technol Eng ; 5: 2055668318795396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31191952

RESUMEN

INTRODUCTION: Trans-femoral amputees are at risk of musculoskeletal problems that are in part caused by loading asymmetry during activities, such as prolonged standing, particularly on uneven or sloped ground. METHODS: Four prosthetic conditions were tested; microprocessor knee 'standing support' mode activated (ON) and deactivated (OFF), combined with a rigidly attached foot (RA) and with an articulating, hydraulic ankle-foot (HA). Five trans-femoral amputees and five able-bodied controls were measured using a motion capture system and a force plate while standing, facing down a 5° slope. Ground reaction force distributions and centre-of-pressure root-mean-square (COP RMS) were calculated as outcome measures. RESULTS: Compensatory kinematic adjustments were observed for RA conditions but not for HA conditions. HA-OFF reduced ground reaction force degree-of-asymmetry for all five amputees, compared to RA-OFF. RA-ON reduced ground reaction force degree-of-asymmetry for four amputees, compared to RA-OFF. In terms of balance, the HA conditions reduced the mean inter-limb COP RMS by 24-25% compared to equivalent RA conditions, while ON conditions reduced it by 9-11%, compared to equivalent OFF conditions. CONCLUSIONS: It is important to consider both prosthetic knee and ankle technologies when prescribing devices to trans-femoral amputees. The combination of hydraulic ankle and knee standing support technologies produced outcomes closest to normal biomechanics.

4.
Med Eng Phys ; 49: 131-139, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28927643

RESUMEN

The bespoke interface between a lower limb residuum and a prosthetic socket is critical for an amputee's comfort and overall rehabilitation outcomes. Analysis of interface kinematics and kinetics is important to gain full understanding of the interface biomechanics, which could aid clinical socket fit, rehabilitation and amputee care. This pilot study aims to investigate the dynamic correlation between kinematic movement and kinetic stresses at the interface during walking tests on different terrains. One male, knee disarticulation amputee participated in the study. He was asked to walk on both a level surface and a 5° ramped surface. The movement between the residuum and the socket was evaluated by the angular and axial couplings, based on the outputs from a 3D motion capture system. The corresponding kinetic stresses at anterior-proximal (AP), posterior-proximal (PP) and anterior-distal (AD) locations of the residuum were measured, using individual stress sensors. Approximately 8° of angular coupling and up to 32 mm of axial coupling were measured when walking on different terrains. The direction of the angular coupling shows strong correlation with the pressure difference between the PP and AP sensors. Higher pressure was obtained at the PP location than the AP location during stance phase, associated with the direction of the angular coupling. A strong correlation between axial coupling length, L, and longitudinal shear was also evident at the PP and AD locations i.e. the shortening of L corresponds to the increase of shear in the proximal direction. Although different terrains did not affect these correlations in principle, interface kinematic and kinetic values suggested that gait changes can induce modifications to the interface biomechanics. It is envisaged that the reported techniques could be potentially used to provide combined kinematics and kinetics for the understanding of biomechanics at the residuum/socket interface, which may play an important role in the clinical assessment of prosthetic component settings, including socket fit quality.


Asunto(s)
Amputados , Desarticulación , Rodilla/cirugía , Fenómenos Mecánicos , Adulto , Fenómenos Biomecánicos , Marcha , Humanos , Cinética , Masculino , Proyectos Piloto
5.
Proc Inst Mech Eng H ; 231(3): 235-242, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28164748

RESUMEN

Mechanical coupling at the interface between lower limb residua and prosthetic sockets plays an important role in assessing socket fitting and tissue health. However, most research lab-based lower limb prosthetic simulators to-date have implemented a rigid socket coupling. This study describes the fabrication and implementation of a lower limb residuum/socket interface simulator, designed to reproduce the forces and moments present during the key loading phases of amputee walking. An artificial residuum made with model bones encased in silicone was used, mimicking the compliant mechanical loading of a real residuum/socket interface. A 6-degree-of-freedom load cell measured the overall kinetics, having previously been incorporated into an amputee's prosthesis to collect reference data. The developed simulator was compared to a setup where a rigid pylon replaced the artificial residuum. A maximum uniaxial load of 850 N was applied, comparable to the peak vertical ground reaction force component during amputee walking. Load cell outputs from both pylon and residuum setups were compared. During weight acceptance, when including the artificial residuum, compression decreased by 10%, while during push off, sagittal bending and anterior-posterior shear showed a 25% increase and 34% decrease, respectively. Such notable difference by including a compliant residuum further highlighted the need for such an interface simulator. Subsequently, the simulator was adjusted to produce key load cell outputs briefly aligning with those from amputee walking. Force sensing resistors were deployed at load bearing anatomic locations on the residuum/socket interface to measure pressures and were compared to those cited in the literature for similar locations. The development of such a novel simulator provides an objective adjunct, using commonly available mechanical test machines. It could potentially be used to provide further insight into socket design, fit and the complex load transfer mechanics at the residuum/socket interface, as well as to evaluate the structural performance of prostheses.


Asunto(s)
Miembros Artificiales , Diseño de Prótesis , Muñones de Amputación , Amputados , Fenómenos Biomecánicos , Simulación por Computador , Humanos , Modelos Biológicos , Soporte de Peso
6.
Healthc Technol Lett ; 3(4): 280-283, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28008364

RESUMEN

This Letter presents a capacitive-based sensor system for fingertip contact applications. It is capable of simultaneously measuring normal (pressure) and tangential (shear) stresses at the interface between a fingertip and external objects. This could be potentially exploitable for applications in the fields of upper limb prosthetics, robotics, hand rehabilitation and so on. The system was calibrated and its performance was tested using a test machine. To do so, specific test protocols reproducing typical stress profiles in fingertip contact interactions were designed. Results show the system's capability to measure the applied pressure and stresses, respectively, with high linearity between the measured and applied stresses. Subsequently, as a case study, a 'press-drag-lift' based fingertip contact test was conducted by using a finger of a healthy subject. This was to provide an initial evaluation for real-life applications. The case study results indicate that both interface pressure and shear were indeed measured simultaneously, which aligns well with the designed finger test protocols. The potential applications for the sensor system and corresponding future works are also discussed.

7.
Med Eng Phys ; 37(12): 1162-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26525779

RESUMEN

Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design.


Asunto(s)
Extremidad Inferior/fisiología , Movimiento , Diseño de Prótesis/métodos , Adulto , Amputados , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA