RESUMEN
B cell-targeted therapies are effective for treating multiple different kidney diseases in humans and also protect mice from Adriamycin nephropathy. Because glomerular IgM is frequently seen in both humans and mice with "nonimmune" forms of glomerular disease, we hypothesized that natural IgM binds to epitopes displayed in the injured glomerulus, exacerbating injury. To test this hypothesis, we induced Adriamycin nephropathy in BALB/C mice that cannot secrete soluble IgM (sIgM-/- mice) and compared them with BALB/C controls. Contrary to our prediction, we found that female sIgM-/- mice developed higher mortality and more severe kidney injury after injection of Adriamycin. The absence of soluble IgM did not reduce glomerular complement activation, and IgG was seen deposited within the injured glomeruli. Furthermore, we discovered that female sIgM-/- mice have higher levels of anti-cardiolipin IgG, and that IgG from these mice binds to epitopes in the injured kidney. These findings indicate that natural IgM may prevent generation of autoreactive IgG. Circulating levels of anti-cardiolipin IgG decreased after induction of kidney injury in female mice, consistent with deposition of the Abs in injured tissues. Better understanding of the mechanisms by which the immune system modulates and amplifies kidney injury may enable the development of targeted therapies to slow kidney disease progression.