Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20163, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39215030

RESUMEN

The field of data exploration relies heavily on clustering techniques to organize vast datasets into meaningful subgroups, offering valuable insights across various domains. Traditional clustering algorithms face limitations in terms of performance, often getting stuck in local minima and struggling with complex datasets of varying shapes and densities. They also require prior knowledge of the number of clusters, which can be a drawback in real-world scenarios. In response to these challenges, we propose the "hybrid raven roosting intelligence framework" (HRIF) algorithm. HRIF draws inspiration from the dynamic behaviors of roosting ravens and computational intelligence. What distinguishes HRIF is its effective capacity to adeptly navigate the clustering landscape, evading local optima and converging toward optimal solutions. An essential enhancement in HRIF is the incorporation of the Gaussian mutation operator, which adds stochasticity to improve exploration and mitigate the risk of local minima. This research presents the development and evaluation of HRIF, showcasing its unique fusion of nature-inspired optimization techniques and computational intelligence. Extensive experiments with diverse benchmark datasets demonstrate HRIF's competitive performance, particularly its capability to handle complex data and avoid local minima, resulting in accurate clustering outcomes. HRIF's adaptability to challenging datasets and its potential to enhance clustering efficiency and solution quality position it as a promising solution in the world of data exploration.

2.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37631678

RESUMEN

Fog computing extends mobile cloud computing facilities at the network edge, yielding low-latency application execution. To supplement cloud services, computationally intensive applications can be distributed on resource-constrained mobile devices by leveraging underutilized nearby resources to meet the latency and bandwidth requirements of application execution. Building upon this premise, it is necessary to investigate idle or underutilized resources that are present at the edge of the network. The utilization of a microservice architecture in IoT application development, with its increased granularity in service breakdown, provides opportunities for improved scalability, maintainability, and extensibility. In this research, the proposed schedule tackles the latency requirements of applications by identifying suitable upward migration of microservices within a multi-tiered fog computing infrastructure. This approach enables optimal utilization of network edge resources. Experimental validation is performed using the iFogSim2 simulator and the results are compared with existing baselines. The results demonstrate that compared to the edgewards approach, our proposed technique significantly improves the latency requirements of application execution, network usage, and energy consumption by 66.92%, 69.83%, and 4.16%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA