Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 106(Pt A): 533-546, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28595930

RESUMEN

This study assessed the toxicological and biological responses of aerosols from a novel hybrid tobacco product. Toxicological responses from the hybrid tobacco product were compared to those from a commercially available Tobacco Heating Product (c-THP), a prototype THP (p-THP) and a 3R4F reference cigarette, using in vitro test methods which were outlined as part of a framework to substantiate the risk reduction potential of novel tobacco and nicotine products. Exposure matrices used included total particulate matter (TPM), whole aerosol (WA), and aqueous aerosol extracts (AqE) obtained after machine-puffing the test products under the Health Canada Intense smoking regime. Levels of carbonyls and nicotine in these matrices were measured to understand the aerosol dosimetry of the products. The hybrid tobacco product tested negative across the in vitro assays including mutagenicity, genotoxicity, cytotoxicity, tumour promotion, oxidative stress and endothelial dysfunction. All the THPs tested demonstrated significantly reduced responses in these in vitro assays when compared to 3R4F. The findings suggest these products have the potential for reduced health risks. Further pre-clinical and clinical assessments are required to substantiate the risk reduction of these novel products at individual and population levels.


Asunto(s)
Aerosoles/química , Sistemas Electrónicos de Liberación de Nicotina/instrumentación , Aromatizantes/química , Nicotiana/química , Adulto , Seguridad de Productos para el Consumidor , Sistemas Electrónicos de Liberación de Nicotina/métodos , Sistemas Electrónicos de Liberación de Nicotina/normas , Femenino , Calor , Humanos , Masculino , Mutagénesis , Material Particulado , Fumar
2.
Toxicol Lett ; 265: 170-178, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27965004

RESUMEN

DNA damage can be caused by a variety of external and internal factors and together with cellular responses, can establish genomic instability through multiple pathways. DNA damage therefore, is considered to play an important role in the aetiology and early stages of carcinogenesis. The DNA-damage inducing potential of tobacco smoke aerosols in vitro has been extensively investigated; however, the ability of e-cigarette aerosols to induce DNA damage has not been extensively investigated. E-cigarette use has grown globally in recent years and the health implications of long term e-cigarette use are still unclear. Therefore, this study has assessed the induction of double-strand DNA damage in vitro using human lung epithelial cells to e-cigarette aerosols from two different product variants (a "cigalike" and a closed "modular" system) and cigarette smoke. A Vitrocell® VC 10 aerosol exposure system was used to generate and dilute cigarette smoke and e-cigarette aerosols, which were delivered to human bronchial epithelial cells (BEAS-2Bs) housed at the air-liquid-interface (ALI) for up to 120min exposure (diluting airflow, 0.25-1L/min). Following exposure, cells were immediately fixed, incubated with primary (0.1% γH2AX antibody in PBS) and secondary antibodies (DyLight™ 549 conjugated goat anti-mouse IgG) containing Hoechst dye DNA staining solution (0.2% secondary antibody and 0.01% Hoechst in PBS), and finally screened using the Cellomics Arrayscan VTI platform. The results from this study demonstrate a clear DNA damage-induced dose response with increasing smoke concentrations up to cytotoxic levels. In contrast, e-cigarette aerosols from two product variants did not induce DNA damage at equivalent to or greater than doses of cigarette smoke aerosol. In this study dosimetry approaches were used to contextualize exposure, define exposure conditions and facilitate comparisons between cigarette smoke and e-cigarette aerosols. Quartz crystal microbalance (QCM) technology and quantified nicotine delivery were both assessed at the exposure interface. Nicotine was eluted from the QCM surface to give a quantifiable measure of exposure to support deposited mass. Dose measured as deposited mass (µg/cm2) and nicotine (ng/mL) demonstrated that in vitro e-cigarette exposures were conducted at doses up to 12-28 fold to that of cigarette smoke and demonstrated a consistent negative finding.


Asunto(s)
Daño del ADN , Sistemas Electrónicos de Liberación de Nicotina/efectos adversos , Células Epiteliales/efectos de los fármacos , Histonas/genética , Pulmón/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Aerosoles , Bioensayo , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Epiteliales/química , Células Epiteliales/patología , Humanos , Pulmón/patología , Nicotina/análisis , Nicotina/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Fumar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA