Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241370

RESUMEN

A first-principles study of the atomic structure and electron density distribution at the Zr/Nb interface under the influence of helium impurities and helium-vacancy complexes was performed using the optimised Vanderbilt pseudopotential method. For the determination of the preferred positions of the helium atom, the vacancy and the helium-vacancy complex at the interface, the formation energy of the Zr-Nb-He system has been calculated. The preferred positions of the helium atoms are in the first two atomic layers of Zr at the interface, where helium-vacancy complexes form. This leads to a noticeable increase in the size of the reduced electron density areas induced by vacancies in the first Zr layers at the interface. The formation of the helium-vacancy complex reduces the size of the reduced electron density areas in the third Zr and Nb layers as well as in the Zr and Nb bulk. Vacancies in the first niobium layer near the interface attract the nearest zirconium atoms and partially replenish the electron density. This may indicate a possible self-healing of this type of defect.

2.
Materials (Basel) ; 15(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744353

RESUMEN

The experimental results regarding the effect of warm (573 K) abc pressing with an increase in the specified true strain, e, up to 9.55, on the microstructure and crystal structure defects (dislocations, vacancies) of the Ti49.8Ni50.2 (at %) alloy are presented. It is shown that all samples (regardless of e) have a two-level microstructure. The grains-subgrains of the submicrocrystalline scale level are in the volumes of large grains. The average sizes of both large grains and subgrain grains decrease with increasing e to 9.55 (from 27 to 12 µm and from 0.36 to 0.13 µm, respectively). All samples had a two-phase state (rhombohedral R and monoclinic B19' martensitic phases) at 295 K. The full-profile analysis of X-ray reflections of the B2 phase obtained at 393 K shows that the dislocation density increases from 1014 m-2 to 1015 m-2 after pressing with e = 1.84 and reaches 2·1015 m-2 when e increases to 9.55. It has been established by positron annihilation lifetime spectroscopy that dislocations are the main type of defects in initial samples and the only type of defects in samples after abc pressing. The lifetime of positrons trapped by dislocations is 166 ps, and the intensity of this component increases from 83% in the initial samples to 99.4% after pressing with e = 9.55. The initial samples contain a component with a positron lifetime of 192 ps (intensity 16.4%), which corresponds to the presence of monovacancies in the nickel sublattice of the B2 phase (concentration ≈10-5). This component is absent in the positron lifetime spectra in the samples after pressing. The results of the analysis of the Doppler broadening spectroscopy correlate with the data obtained by the positron annihilation lifetime spectroscopy.

3.
Materials (Basel) ; 15(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35591666

RESUMEN

Radiation damage is one of the significant factors limiting the operating time of many structural materials working under extreme conditions. One of the promising directions in the development of materials that are resistant to radiation damage and have improved physical and mechanical properties is the creation of nanoscale multilayer coatings (NMCs). The paper is devoted to the experimental comprehension of changes in the defect structure and mechanical properties of nanoscale multilayer coatings (NMCs) with alternating layers of Zr and Nb under irradiation. Series of Zr/Nb NMCs with different thicknesses of individual layers were fabricated by magnetron sputtering and subjected to H+ irradiation. The evolution of structure and phase states, as well as the defect state under proton irradiation, was studied using the methods of high-resolution transmission electron microscopy (HRTEM), X-ray diffraction analysis (XRD), glow discharge optical emission spectroscopy (GDOES), and positron annihilation spectroscopy (PAS). The layer-by-layer analysis of structural defects was carried out by Doppler broadening spectroscopy (DBS) using a variable-energy positron beam. To estimate the binding energy and the energy paths for the hydrogen diffusion in Zr/Nb NMCs, calculations from the first principles were used. When the thickness of individual layers is less than 25 nm, irradiation causes destruction of the interfaces, but there is no significant increase in the defect level, the S parameter (open volume defects amount) before and after irradiation is practically unchanged. After irradiation of NMC Zr/Nb with a thickness of layers 50 and 100 nm, the initial microstructure is retained, and the S parameter is significantly reduced. The GDOES data reveal the irregular H accumulation at the interface caused by significant differences in H diffusion barriers in the bulk of Zr and Nb multilayers as well as near the interface's region.

4.
Materials (Basel) ; 15(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269054

RESUMEN

The current work is devoted to developing a system for the complex research of metal-hydrogen systems, including in an in situ mode. The system consists of a controlled gas reactor with a unique reaction chamber, a radioisotope positron source, and a positron annihilation spectroscopy complex. The use of the system enables in situ investigation of the defect structure of solids in hydrogen sorption-desorption processes at temperatures up to 900 °C and pressures up to 50 bar. Experimental investigations of magnesium and magnesium hydride during thermal annealing were carried out to approve the possibilities of the developed complex. It was shown that one cycle of magnesium hydrogenation-dehydrogenation resulted in the accumulation of irreversible hydrogen-induced defects. The defect structure investigation of the magnesium-hydrogen system by positron annihilation techniques was supplemented with a comprehensive study by scanning electron microscopy, X-ray diffraction analysis, and hydrogen sorption-desorption studies.

5.
Materials (Basel) ; 15(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160960

RESUMEN

During high-speed cutting, a white layer is often produced on the machined surfaces after mechanical machining, seriously affecting the mechanical properties. These properties are related to the material structure and the defects induced by cutting. However, there is a lack of research on the atomic-scale defects of the white layer. This paper studied the influence of cutting parameters, namely the feed rate, cutting speed and cutting depth, on atomic-scale defects induced by high-speed cutting in GCr15 steel. Positron annihilation studies showed typical plastically deformed or tempered carbon steel defects with additional vacancy cluster components. The quantity of these clusters changed with cutting parameters. Furthermore, significant changes were observed in the subsurface region up to 1 µm, occurring as a result of simultaneous phase transformations, deformation and thermal impacts. The predominant accumulation of only one type of atomic-scale defect was not observed.

6.
Materials (Basel) ; 14(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34832140

RESUMEN

This paper presents the results of microstructural analysis of novel preceramic paper-derived SiCf/SiC composites fabricated by spark plasma sintering. The sintering temperature and pressure were 2100/2200 °C and 60/100 MPa, respectively. The content of fibers in the composites was approx. 10 wt %. The SiCf/SiC composites were analyzed by positron annihilation methods, X-ray diffraction technology, scanning electron microscopy, and Raman spectroscopy. Longer sintering time causes the proportion of the 6H-SiC composition to increase to ~80%. The increase in sintering temperature from 2100 °C to 2200 °C leads to partial transition of 4H-SiC to 6H-SiC during the sintering process, and the long-life component of positrons indicates the formation of Si vacancies. The Raman characteristic peaks of turbostratic graphite appear in the Raman spectrum of SiC fibers, this is caused by the diffusion of carbon from the surface of the SiC fiber and the preceramic paper during the high-temperature sintering process.

7.
Materials (Basel) ; 14(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34772219

RESUMEN

This work aims to investigate the 64Cu isotope applicability for positron annihilation experiments in in situ mode. We determined appropriate characteristics of this isotope for defect studies and implemented them under aggressive conditions (i.e., elevated temperature, hydrogen environment) in situ to determine the sensitivity of this approach to thermal vacancies and hydrogen-induced defects investigation. Titanium samples were used as test materials. The source was obtained by the activation of copper foil in the thermal neutron flux of a research nuclear reactor. Main spectrometric characteristics (e.g., the total number of counts, fraction of good signals, peak-to-noise ratio) of this source, as well as line-shaped parameters of the Doppler broadening spectrum (DBS), were studied experimentally. These characteristics for 64Cu (in contrast to positron sources with longer half-life) were shown to vary strongly with time, owing to the rapidly changing activity. These changes are predictable and should be considered in the analysis of experimental data to reveal information about the defect structure. The investigation of samples with a controlled density of defects revealed the suitability of 64Cu positron source with an activity of 2-40 MBq for defects studies by DBS. However, greater isotope activity could also be applied. The results of testing this source at high temperatures and in hydrogen atmosphere showed its suitability to thermal vacancies and hydrogen-induced defects studies in situ. The greatest changes in the defect structure of titanium alloy during high-temperature hydrogen saturation occurred at the cooling stage, when the formation of hydrides began, and were associated with an increase in the dislocation density.

8.
J Synchrotron Radiat ; 27(Pt 3): 788-795, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381782

RESUMEN

Different approaches of 2D lens arrays as Shack-Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack-Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.

9.
Materials (Basel) ; 11(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29747471

RESUMEN

Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °Ð¡ at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

10.
Nanomaterials (Basel) ; 8(1)2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29324712

RESUMEN

The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA