Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 602(7895): 96-100, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35046578

RESUMEN

Flight speed is positively correlated with body size in animals1. However, miniature featherwing beetles can fly at speeds and accelerations of insects three times their size2. Here we show that this performance results from a reduced wing mass and a previously unknown type of wing-motion cycle. Our experiment combines three-dimensional reconstructions of morphology and kinematics in one of the smallest insects, the beetle Paratuposa placentis (body length 395 µm). The flapping bristled wings follow a pronounced figure-of-eight loop that consists of subperpendicular up and down strokes followed by claps at stroke reversals above and below the body. The elytra act as inertial brakes that prevent excessive body oscillation. Computational analyses suggest functional decomposition of the wingbeat cycle into two power half strokes, which produce a large upward force, and two down-dragging recovery half strokes. In contrast to heavier membranous wings, the motion of bristled wings of the same size requires little inertial power. Muscle mechanical power requirements thus remain positive throughout the wingbeat cycle, making elastic energy storage obsolete. These adaptations help to explain how extremely small insects have preserved good aerial performance during miniaturization, one of the factors of their evolutionary success.


Asunto(s)
Fenómenos Biomecánicos , Escarabajos/anatomía & histología , Escarabajos/fisiología , Vuelo Animal/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Animales , Escarabajos/ultraestructura , Alas de Animales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA