Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(6-1): 064139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39021033

RESUMEN

This paper summarizes two related effective-temperature analyses of nonequilibrium phenomena: first, dislocations in deforming crystals and, second, chaotic behaviors of defects in thermally driven Rayleigh-Bénard hydrodynamic systems. The results are encouraging for broader applications of this statistical concept.

2.
Phys Rev E ; 103(6-1): 063004, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271632

RESUMEN

This paper describes an attempt to construct a first-principles theory of the fracture toughness of crystalline solids. It is based on the thermodynamic dislocation theory (TDT), which starts with the assertion that dislocations in solids must obey the second law of thermodynamics. A second starting assumption is that fracture is initiated when the tip of a notch is driven to undergo a dynamic shape instability. The results of this analysis are developed in comparison with measurements by Gumbsch and colleagues of the notch toughness of both predeformed and non-predeformed tungsten crystals. The theory includes a simple ad hoc conjecture regarding tip dynamics at small dislocation densities. Nevertheless, its predictions agree quantitatively with the experimental data, including both brittle and ductile fracture, over a wide range of temperatures, loading rates, and initial conditions.

3.
Proc Natl Acad Sci U S A ; 117(47): 29431-29434, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168714

RESUMEN

The thermodynamic dislocation theory (TDT) is based on two highly unconventional assumptions: first, that driven systems containing large numbers of dislocations are subject to the second law of thermodynamics and second, that the controlling inverse timescale for these systems is the thermally activated rate at which entangled pairs of dislocations become unpinned from each other. Here, we show that these two assumptions predict a scaling relation for steady-state stress as a function of strain rate and that this relation is accurately obeyed over a wide range of experimental data for aluminum and copper. This scaling relation poses a stringent test for the validity of the TDT. The fact that the TDT passes this test means that a wide range of problems in solid mechanics, previously thought to be fundamentally intractable, can now be addressed with confidence.

4.
Phys Rev E ; 101(6-1): 063004, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688555

RESUMEN

Recent computational and laboratory experiments have shown that brittle-ductile transitions in the notch toughnesses of metallic glasses such as Vitreloy 1 are strongly sensitive to the initial effective disorder (or "fictive") temperature. Glasses with lower effective temperatures are weak and brittle; those with higher effective temperatures are strong and ductile. The analysis of this phenomenon presented here examines the onset of fracture at the tip of a notch as predicted by the shear-transformation-zone theory of spatially varying plastic deformation. The central ingredient of this analysis is an approximation for the dynamics of the plastic zone formed by stress concentration at the notch tip. This zone first shields the tip but then, with increasing stress, expands suddenly, producing a discontinuous transition between brittle and ductile failure in satisfactory agreement with the numerical and experimental observations.

5.
Phys Rev E ; 98(2-1): 023006, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253488

RESUMEN

Results of recent large-scale molecular dynamics simulations of dislocation-mediated solid plasticity are compared with predictions of the statistical thermodynamic theory of these phenomena. These computational and theoretical analyses are in substantial agreement with each other in both their descriptions of strain-rate-dependent steady plastic flows and of transient stress peaks associated with initially small densities of dislocations. The comparisons between the numerical simulations and basic theory reveal inconsistencies in some conventional phenomenological descriptions of solid plasticity.

6.
Phys Rev E ; 95(3-1): 033004, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415175

RESUMEN

The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of yielding transitions and grain-size effects in polycrystalline solids. Calculations are based on the 1995 experimental results of Meyers, Andrade, and Chokshi [Metall. Mater. Trans. A 26, 2881 (1995)MMTAEB1073-562310.1007/BF02669646] for polycrystalline copper under strain-hardening conditions. The main assertion is that the well-known Hall-Petch effects are caused by enhanced strengths of dislocation sources at the edges of grains instead of the commonly assumed resistance to dislocation flow across grain boundaries. The theory describes rapid transitions between elastic and plastic deformation at yield points; thus it can be used to predict grain-size dependence of both yield stresses and flow stresses.

7.
Phys Rev E ; 95(1-1): 013004, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208450

RESUMEN

The thermodynamic dislocation theory presented in previous papers is used here to describe shear-banding instabilities. Central ingredients of the theory are a thermodynamically defined effective configurational temperature and a formula for the plastic strain rate determined by thermally activated depinning of entangled dislocations. This plastic strain rate is extremely sensitive to variations of the stress and the ordinary temperature. As a result of this sensitivity, the system undergoes rapid shear banding instabilities when ordinary thermal relaxation is slow. It also undergoes rapid changes from elastic to plastic behaviors at yielding transitions.

8.
Phys Rev E ; 96(1-1): 013004, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347159

RESUMEN

The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.

9.
Phys Rev E ; 96(5-1): 053005, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347808

RESUMEN

The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

10.
Phys Rev E ; 94(6-1): 063004, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085419

RESUMEN

The mechanical behaviors of polycrystalline solids are determined by the interplay between phenomena governed by two different thermodynamic temperatures: the configurational effective temperature that controls the density of dislocations, and the ordinary kinetic-vibrational temperature that controls activated depinning mechanisms and thus deformation rates. This paper contains a review of the effective-temperature theory and its relation to conventional dislocation theories. It includes a simple illustration of how these two thermal effects can combine to produce a predictive theory of spatial heterogeneities such as shear-banding instabilities. Its main message is a plea that conventional dislocation theories be reformulated in a thermodynamically consistent way so that the vast array of observed behaviors can be understood systematically.

11.
Artículo en Inglés | MEDLINE | ID: mdl-26465444

RESUMEN

This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

12.
Artículo en Inglés | MEDLINE | ID: mdl-26382396

RESUMEN

We propose a theory of shear flow in dense granular materials. A key ingredient of the theory is an effective temperature that determines how the material responds to external driving forces such as shear stresses and vibrations. We show that, within our model, friction between grains produces stick-slip behavior at intermediate shear rates, even if the material is rate strengthening at larger rates. In addition, externally generated acoustic vibrations alter the stick-slip amplitude, or suppress stick-slip altogether, depending on the pressure and shear rate. We construct a phase diagram that indicates the parameter regimes for which stick-slip occurs in the presence and absence of acoustic vibrations of a fixed amplitude and frequency. These results connect the microscopic physics to macroscopic dynamics and thus produce useful information about a variety of granular phenomena, including rupture and slip along earthquake faults, the remote triggering of instabilities, and the control of friction in material processing.


Asunto(s)
Modelos Teóricos , Movimiento (Física) , Acústica , Fricción , Presión , Termodinámica , Vibración
13.
Artículo en Inglés | MEDLINE | ID: mdl-26274172

RESUMEN

Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. In particular, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.

14.
Artículo en Inglés | MEDLINE | ID: mdl-25314434

RESUMEN

Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.


Asunto(s)
Acústica , Fenómenos Mecánicos , Modelos Teóricos , Movimiento (Física) , Cinética , Temperatura
15.
Rep Prog Phys ; 77(4): 042501, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24646953

RESUMEN

This key-issues review is a plea for a new focus on simpler and more realistic models of glass-forming fluids. It seems to me that we have too often been led astray by sophisticated mathematical models that beautifully capture some of the most intriguing features of glassy behavior, but are too unrealistic to provide bases for predictive theories. As illustrations of what I mean, the first part of this article is devoted to brief summaries of imaginative, sensible, but disparate and often contradictory ideas for solving glass problems. Almost all of these ideas remain alive today, with their own enthusiastic advocates. I then describe numerical simulations, mostly by H Tanaka and coworkers, in which it appears that very simple, polydisperse systems of hard disks and spheres develop long range, Ising-like, bond-orientational order as they approach glass transitions. Finally, I summarize my recent proposal that topologically ordered clusters of particles, in disordered environments, tend to become aligned with each other as if they were two-state systems, and thus produce the observed Ising-like behavior. Neither Tanaka's results nor my proposed interpretation of them fit comfortably within any of the currently popular glass theories.

16.
Artículo en Inglés | MEDLINE | ID: mdl-23944429

RESUMEN

Numerical simulations by Tanaka and co-workers indicate that glass-forming systems of moderately polydisperse hard-core particles, in both two and three dimensions, exhibit diverging correlation lengths. These correlations are described by Ising-like critical exponents, and are associated with diverging, Vogel-Fulcher-Tamann, structural relaxation times. Related simulations of thermalized hard disks indicate that the curves of pressure versus packing fraction for different polydispersities exhibit a sequence of transition points, starting with a liquid-hexatic transition for the monodisperse case, and crossing over with increasing polydispersity to glassy, Ising-like critical points. I propose to explain these observations by assuming that glass-forming fluids contain twofold degenerate, locally ordered clusters of particles, similar to the two-state systems that have been invoked to explain other glassy phenomena. This paper starts with a brief statistical derivation of the thermodynamics of thermalized, hard-core particles. It then discusses how a two-state, Ising-like model can be described within that framework in terms of a small number of statistically relevant, internal state variables. The resulting theory agrees accurately with the simulation data. I also propose a rationale for the observed relation between the Ising-like correlation lengths and the Vogel-Fulcher-Tamann formula.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051507, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23004767

RESUMEN

The shear-transformation-zone (STZ) theory has been remarkably successful in accounting for broadly peaked, frequency-dependent, viscoelastic responses of amorphous systems near their glass temperatures T_{g}. This success is based on the theory's first-principles prediction of a wide range of internal STZ transition rates. Here, I show that the STZ rate distribution causes the Newtonian viscosity to be strongly temperature dependent; and I propose that it is this temperature dependence, rather than any heterogeneity-induced enhancement of diffusion, that is at least in part responsible for Stokes-Einstein violations near T_{g}. I also show that stretched-exponential relaxation of density fluctuations emerges naturally from the same distribution of STZ transition rates that predicts the viscoelastic behavior. To be consistent with observations of Fickian diffusion near T_{g}, however, an STZ-based diffusion theory somehow must include the cascades of correlated displacement events that are seen in low-temperature numerical simulations.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061308, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23005087

RESUMEN

We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards' statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are developed within a statistical thermodynamic framework analogous to that which has been used in the analysis of molecular glasses. For hard spheres, the system volume V replaces the internal energy U as a function of entropy S in conventional statistical mechanics. In place of the effective temperature, the compactivity X=∂V/∂S characterizes the internal state of disorder. We derive the STZ equations of motion for a granular material accordingly, and predict the strain rate as a function of the ratio of the shear stress to the pressure for different values of a dimensionless, temperature-like variable near a jamming transition. We use a simplified version of our theory to interpret numerical simulations by Haxton, Schmiedeberg, and Liu, and in this way are able to obtain useful insights about internal rate factors and relations between jamming and glass transitions.


Asunto(s)
Coloides/química , Transferencia de Energía , Modelos Químicos , Modelos Moleculares , Reología/métodos , Termodinámica , Simulación por Computador , Movimiento (Física) , Resistencia al Corte
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 011502, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23005420

RESUMEN

We present a shear-transformation-zone (STZ) theoretical analysis of molecular-dynamics simulations of a rapidly sheared metallic glass. These simulations are especially revealing because, although they are limited to high strain rates, they span temperatures ranging from well below to well above the glass transition. With one important discrepancy, the simplified STZ theory used here reproduces the simulation data, including the way in which those data can be made to collapse approximately onto simple curves by a scaling transformation. The STZ analysis implies that the system's behavior at high strain rates is controlled primarily by effective-temperature thermodynamics, as opposed to system-specific details of the molecular interactions. The discrepancy between theory and simulations occurs at the lower strain rates for temperatures near the glass transition. We argue that this discrepancy can be resolved by the same multispecies generalization of STZ theory that has been proposed recently for understanding frequency-dependent viscoelastic responses, Stokes-Einstein violations, and stretched-exponential relaxation in equilibrated glassy materials.


Asunto(s)
Vidrio/química , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Reología/métodos , Simulación por Computador , Módulo de Elasticidad , Transición de Fase , Resistencia al Corte
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 1): 061503, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21797368

RESUMEN

We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA