RESUMEN
Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a corrosion technique used to characterize the behavior of different alloys and determine the type of corrosion in a system. The objective of this research is to characterize by EN technique different aeronautical alloys (Al, Ti, steels, and superalloys) using different analysis methods such as time domain (visual analysis, statistical), frequency domain (power spectral density (PSD)), and frequency-time domain (wavelet decomposition, Hilbert Huang analysis, and recurrence plots (RP)) related to the corrosion process. Optical microscopy (OM) is used to observe the surface of the tested samples. The alloys were exposed to 3.5 wt.% NaCl and H2SO4 solutions at room temperature. The results indicate that HHT and recurrence plots are the best options for determining the corrosion type compared with the other methods due to their ability to analyze dynamic and chaotic systems, such as corrosion. Corrosion processes such as passivation and localized corrosion can be differentiated when analyzed using HHT and RP methods when a passive system presents values of determinism between 0.5 and 0.8. Also, to differentiate the passive system from the localized system, it is necessary to see the recurrence plot due to the similarity of the determinism value. Noise impedance (Zn) is one of the best options for determining the corrosion kinetics of one system, showing that Ti CP2 and Ti-6Al-4V presented 742,824 and 939,575 Ω·cm2, while Rn presented 271,851 and 325,751 Ω·cm2, being the highest when exposed to H2SO4.
RESUMEN
This article presents an experimental study to analyze the mechanical properties of a soil stabilized with ordinary Portland cement (OPC) under a sustainable approach consisting of a significant substitution of OPC for sugarcane bagasse ash (SCBA) to reduce the quantity of cement used in the stabilization, reaching the necessary mechanical requirements for its use as a subgrade layer. Soil specimens were elaborated with 3%, 5%, and 7% OPC as a stabilizing agent by weight of the soil. These mixtures were then partially substituted with 25%, 50%, and 75% SCBA, with these percentages being by weight of the stabilizer (OPC). Compaction, compressive strength, and California bearing ratio (CBR) tests were performed to evaluate the mechanical properties of the specimens. The results indicate that a 25% substitution of OPC by SCBA shows a similar performance to the mixture with only Portland cement, so a reduction in OPC use can be made. Further, with a substitution of 100% OPC by SCBA, the CBR of natural soil without stabilizers is improved.
RESUMEN
Novel green concrete (GC) admixtures containing 50% and 100% recycled coarse aggregate (RCA) were manufactured according to the ACI 211.1 standard. The GC samples were reinforced with AISI 1080 carbon steel and AISI 304 stainless steel. Concrete samples were exposed to 3.5 wt.% Na2SO4 and control (DI-water) solutions. Electrochemical testing was assessed by corrosion potential (Ecorr) according to the ASTM C-876-15 standard and a linear polarization resistance (LPR) technique following ASTM G59-14. The compressive strength of the fully substituted GC decreased 51.5% compared to the control sample. Improved corrosion behavior was found for the specimens reinforced with AISI 304 SS; the corrosion current density (icorr) values of the fully substituted GC were found to be 0.01894 µA/cm2 after Day 364, a value associated with negligible corrosion. The 50% RCA specimen shows good corrosion behavior as well as a reduction in environmental impact. Although having lower mechanical properties, a less dense concrete matrix and high permeability, RCA green concrete presents an improved corrosion behavior thus being a promising approach to the higher pollutant conventional aggregates.
RESUMEN
In this study, ternary ecological concrete (TEC) mixtures were produced with partial substitution of the ordinary Portland cement (OPC) by 10%, 20%, and 30% of sugar cane bagasse ash (SCBA) and silica fume (SF); a control mixture (100% OPC) was prepared according to ACI 211.1 standard. The studied TEC specimens were reinforced with AISI 304 stainless steel and AISI 1018 carbon steel rebars. TEC reinforced specimens were immersed in two different electrolytes, a control (DI-water) and 3.5 wt.% MgSO4 solution, for 180 days. The electrochemical corrosion was monitored by corrosion potential (Ecorr) according to ASTM C-876-15 standard, and the linear polarization resistance (LPR) technique using ASTM G59 standard. The Ecorr and current density icorr results show that AISI 304 stainless steel rebars have a high corrosion resistance, with icorr values below 0.1 µA/cm2, which is interpreted as a level of negligible corrosion. The best corrosion performance was found for the TEC mixture made with a 20% addition of blend of sugar cane bagasse ash-silica fume (SCBA-SF) to the OPC.