Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros











Intervalo de año de publicación
2.
Anal Bioanal Chem ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126504

RESUMEN

Water, renowned for its sustainability and minimal toxicity, is an ideal candidate for environmentally friendly solvent-based microextraction. However, its potential as an extractant solvent in miniaturized sample preparation remains largely unexplored. This paper pioneers using water as the extraction solvent in headspace single-drop microextraction (HS-SDME) for N-nitrosamines from losartan tablets. Autonomous HS-SDME is executed by an Arduino-controlled, lab-made Cartesian robot, using water for the online preconcentration of enriched extracts through direct injection into a column-switching system. Critical experimental parameters influencing HS-SDME performance are systematically explored through univariate and multivariate experiments. While most previously reported methods for determining N-nitrosamines in pharmaceutical formulations rely on highly selective mass spectrometry detection techniques to handle the strong matrix effects typical of pharmaceutical samples, the water-based HS-SDME method efficiently eliminates the interfering effects of a large amount of the pharmaceutical active ingredient and tablet excipients, allowing straightforward analysis using high-performance liquid chromatography with ultraviolet detection (HPLC-UV-Vis). Under optimized conditions, the developed method exhibits linear responses from 100 to 2400 ng g-1, demonstrating appropriate detectability, precision, and accuracy for the proposed application. Additionally, the environmental sustainability of the method is assessed using the AGREEprep methodology, positioning it as an outstanding green alternative for determining hazardous contaminants in pharmaceutical products.

3.
Anal Bioanal Chem ; 416(24): 5233-5253, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39158631

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) has emerged as a powerful analytical technique for analyzing complex biological samples. Among various chromatographic stationary phases, porous graphitic carbon (PGC) columns have attracted significant attention due to their unique properties-such as the ability to separate both polar and non-polar compounds and their stability through all pH ranges and to high temperatures-besides the compatibility with LC-MS. This review discusses the applicability of PGC for SPE and separation in LC-MS-based analyses of human biological samples, highlighting the diverse applications of PGC-LC-MS in analyzing endogenous metabolites, pharmaceuticals, and biomarkers, such as glycans, proteins, oligosaccharides, sugar phosphates, and nucleotides. Additionally, the fundamental principles underlying PGC column chemistry and its advantages, challenges, and advances in method development are explored. This comprehensive review aims to provide researchers and practitioners with a valuable resource for understanding the capabilities and limitations of PGC columns in LC-MS-based analysis of human biological samples, thereby facilitating advancements in analytical methodologies and biomedical research.


Asunto(s)
Grafito , Espectrometría de Masas , Humanos , Grafito/química , Cromatografía Liquida/métodos , Porosidad , Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos , Biomarcadores/análisis , Proteínas/análisis , Polisacáridos/análisis , Cromatografía Líquida con Espectrometría de Masas
4.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125063

RESUMEN

The advancement of traditional sample preparation techniques has brought about miniaturization systems designed to scale down conventional methods and advocate for environmentally friendly analytical approaches. Although often referred to as green analytical strategies, the effectiveness of these methods is intricately linked to the properties of the sorbent utilized. Moreover, to fully embrace implementing these methods, it is crucial to innovate and develop new sorbent or solid phases that enhance the adaptability of miniaturized techniques across various matrices and analytes. Graphene-based materials exhibit remarkable versatility and modification potential, making them ideal sorbents for miniaturized strategies due to their high surface area and functional groups. Their notable adsorption capability and alignment with green synthesis approaches, such as bio-based graphene materials, enable the use of less sorbent and the creation of biodegradable materials, enhancing their eco-friendly aspects towards green analytical practices. Therefore, this study provides an overview of different types of hybrid graphene-based materials as well as their applications in crucial miniaturized techniques, focusing on offline methodologies such as stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), pipette-tip solid-phase extraction (PT-SPE), disposable pipette extraction (DPX), dispersive micro-solid-phase extraction (d-µ-SPE), and magnetic solid-phase extraction (MSPE).

5.
J Chromatogr A ; 1730: 465021, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38897112

RESUMEN

This study introduces a feasible approach for utilizing a conventional High-Performance Liquid Chromatography (HPLC) instrument at the capillary scale (1 - 10 µL/min). The development of an active flow splitter and an adapted UV-visible (UV-vis) detection cell are described. The system employs an Arduino Uno board to monitor a flow sensor and control a stepper motor that automates a split valve to achieve capillary-scale flow rates from a conventional pump. A capillary UV-vis cell compatible with conventional detectors, featuring an optical path length with a volume of 14 nL, was developed to address the detection challenges at this scale and minimize extra column band broadening. The system performance was assessed by a lab-packed LC capillary column with 0.25 mm x 15 cm dimensions packed with 3.0 µm C18 particles. Model compounds, particularly polycyclic aromatic hydrocarbons (PAHs), were employed to assess the functionality of all developed components in terms of theoretical plates, resolution, and band broadening. The proposed system is a profitable, reliable, and cost-effective tool for miniaturized liquid chromatography.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Cromatografía Líquida de Alta Presión/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Diseño de Equipo , Espectrofotometría Ultravioleta
6.
Front Public Health ; 12: 1336014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38932775

RESUMEN

Introduction: Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives: This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method: The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis: Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions: Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.


Asunto(s)
Monitoreo Biológico , Residuos de Plaguicidas , Humanos , Residuos de Plaguicidas/orina , Residuos de Plaguicidas/análisis , Monitoreo Biológico/métodos , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas/métodos , Exposición a Riesgos Ambientales/análisis , Cromatografía Liquida
7.
Anal Chim Acta ; 1284: 341952, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37996153

RESUMEN

BACKGROUND: One of the primary objectives in green analytical practices is the seamless integration of extraction and separation steps, resulting in the augmentation of both analytical throughput and method performance. Consequently, the exploration of prospective sorbent materials has drawn significant attention in the scientific community, particularly concerning the potential for online procedures. Employing the optimal sorbent material within an automated analytical approach holds the promise of elevating the precision of the analytical evaluation. Molecularly imprinted polymers (MIPs) excel in specific analyte interaction within complex matrices. However, MIPs' full potential was not widely exploring especially for online analytical methodologies. RESULTS: Here is presented a comprehensive overview of the current applications of MIPs as sorbent materials within integrated and automated separation methodologies applied to diverse matrices including biological, food, and environmental samples. Notably, their primary advantage, as evidenced in the literature, lies in their exceptional selectivity for the target analyte discussed according to the adopted synthesis protocol. Furthermore, the literature discussed here illustrates the versatility of MIPs in terms of modification with one or more phases which are so-called hybrid materials, such as molecularly imprinted monoliths (MIM), the molecularly imprinted ionic liquid polymer (IL-MIP), and restricted access to molecularly imprinted polymer (RAMIP). The reported advantages enhance their applicability in integrated and automated separation procedures, especially to the column switching methods, across a broader spectrum of applications. SIGNIFICANCE: This revision aims to demonstrate the MIP's potential as a sorbent phase in integrated and automated methods, this comprehensive overview of MIP polymers in integrated and automated separation methodologies can be used as a valuable guide, inspiring new research on developing novel horizons for MIP applications to have their potential emphasized in analytical science and enhanced to the great analytical methods achievement.

8.
Anal Bioanal Chem ; 415(25): 6165-6176, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37532864

RESUMEN

An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.

9.
J Sep Sci ; 46(18): e2300373, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37582640

RESUMEN

Nano-liquid chromatography (nanoLC) is gaining significant attention as a primary analytical technique across various scientific domains. Unlike conventional high-performance LC, nanoLC utilizes columns with inner diameters (i.ds.) usually ranging from 10 to 150 µm and operates at mobile phase flow rates between 10 and 1000 nl/min, offering improved chromatographic performance and detectability. Currently, most exploration of nanoLC has focused on particle-packed columns. Although open tubular LC (OTLC) can provide superior performance, optimized OTLC columns require very narrow i.ds. (< 10 µm) and demand challenging instrumentation. At the moment, these challenges have limited the success of OTLC. Nevertheless, remarkable progress has been made in developing and utilizing OTLC systems featuring narrow columns (< 2 µm). Additionally, significant efforts have been made to explore larger columns (10-75 µm i.d), demonstrating practical applicability in many situations. Due to their perceived advantages, interest in OTLC has resurged in the last two decades. This review provides an updated outlook on the latest developments in OTLC, focusing on instrumental challenges, achievements, and advancements in column technology. Moreover, it outlines selected applications that illustrate the potential of OTLC for performing targeted and untargeted studies.

10.
HardwareX ; 15: e00462, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37600064

RESUMEN

Preparative liquid chromatography is a technique for separating complex samples or isolating pure compounds from complex extracts. It involves eluting samples through a packed column and selectively collecting or isolating the separated bands in a sequence of fractions. Depending on the column length and the sample complexity, a large number of fractions may be obtained, making fraction collection a laborious and time-consuming process. Manual fraction collection is also tedious, error-prone, less reproducible, and susceptible to contamination. Several commercial and lab-made solutions are available for automated fraction collection, but most systems do not synchronize with the instrument detector and collect fractions at fixed volumes or time intervals. We have assembled a low-cost Arduino-based smart fraction collector that can record the signal from the UV-vis detector of the chromatography instrument and enable the automated selective collection of the targeted bands. The system consists of a robot equipped with position sensors and a 3-way solenoid valve that switches the column effluent between the waste or collection positions. By proper programming, an Arduino board records the detector response and actuates the solenoid valve, the position sensors, and the stepper motors to collect the target chromatographic bands.

11.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446660

RESUMEN

Graphene oxide sheets fixed over silica particles (SiGO) and their modification functionalized with C18 and endcapped (SiGO-C18ec) have been reported as sorbents for extraction and analytical columns in LC. In this study, a SiGO column was selected as the extraction column and a SiGO-C18ec as the analytical column to study the applicability and limitations of a column-switching system composed exclusively of columns packed with graphene-based sorbents. Pyriproxyfen and abamectin B1a were selected as the analytes, and orange-flavored carbonated soft drinks as the matrix. The proposed system could be successfully applied to the pyriproxyfen analysis in a concentration range between 0.5 to 25 µg/mL presenting a linearity of R2 = 0.9931 and an intra-day and inter-day accuracy of 82.2-111.4% (RSD < 13.3%) and 95.5-99.8% (RSD < 12.7%), respectively. Furthermore, the matrix composition affected the area observed for the pyriproxyfen: the higher the concentration of orange juice in the soft drink, the higher the pyriproxyfen the signal observed. Additionally, the SiGO extraction column presented a life use of 120 injections for this matrix. In contrast, the proposed system could not apply to the analysis of abamectin B1a, and the SiGO-C18ec analytical column presented significant tailing compared to a similar approach with a C18 analytical column.


Asunto(s)
Grafito , Dióxido de Silicio , Ivermectina
12.
J Sep Sci ; 46(17): e2300214, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400419

RESUMEN

The development of a fast, cost-effective, and efficient microextraction by packed sorbent setup was achieved by combining affordable laboratory-repackable devices of microextraction with a high-throughput cartesian robot. This setup was evaluated for the development of an analytical method to determine N-nitrosamines in losartan tablets. N-nitrosamines pose a significant concern in the pharmaceutical market due to their carcinogenic risk, necessitating their control and quantification in pharmaceutical products. The parameters influencing the performance of this sample preparation for N-nitrosamines were investigated through both univariate and multivariate experiments. Microextractions were performed using just 5.0 mg of carboxylic acid-modified polystyrene divinylbenzene copolymer as the extraction phase. Under the optimized conditions, the automated setup enabled the simultaneous treatment of six samples in less than 20 min, providing reliable analytical confidence for the proposed application. The analytical performance of the automated high-throughput microextraction by the packed sorbent method was evaluated using a matrix-matching calibration. Quantification was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry with chemical ionization at atmospheric pressure. The method exhibited limits of detection as low as 50 ng/g, good linearity, and satisfactory intra-day (1.38-18.76) and inter-day (2.66-20.08) precision. Additionally, the method showed accuracy ranging from 80% to 136% for these impurities in pharmaceutical formulations.


Asunto(s)
Nitrosaminas , Robótica , Nitrosaminas/análisis , Losartán/análisis , Espectrometría de Masas en Tándem/métodos , Límite de Detección , Microextracción en Fase Sólida/métodos , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Comprimidos
13.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511506

RESUMEN

Although LC-MS with atmospheric pressure ionization (API) sources is the primary technique used in modern bioanalytical studies, electron ionization mass spectrometry (EI-MS) can provide some substantial advantages over it. EI-MS is a matrix effect-free technique that provides reproducible and comparable mass spectra, serving as a compound fingerprint for easy identification through automated comparison with spectral libraries. Leveraging EI-MS in biochemical studies can yield critical analytical benefits for targeted and untargeted analyses. However, to fully utilize EI-MS for heavy and non-volatile molecules, a new technology that enables the coupling of liquid chromatography with EI-MS is needed. Recent advancements in nanoLC have addressed the compatibility issues between LC and EI-MS, and innovative interfacing strategies such as Direct-EI, liquid electron ionization (LEI), and Cold-EI have extended the application of EI-MS beyond the determination of volatile organic molecules. This review provides an overview of the latest developments in nanoLC-EI-MS interfacing technologies, discussing their scope and limitations. Additionally, selected examples of nanoLC-EI-MS applications in the field of biochemical analysis are presented, highlighting the potential prospects and benefits that the establishment of this technique can bring to this field.


Asunto(s)
Electrones , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Liquida/métodos , Presión Atmosférica , Tecnología
14.
J Chromatogr A ; 1687: 463690, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36502646

RESUMEN

Sugarcane is widely cultivated in Brazil. Although there are Maximum Residue Limits of pesticides determined for this plant, there is no legislation covering alimentary products from sugarcane. In this study, Disposable Pipette Tip Extraction (DPX) technique was evaluated as a sample preparation technique for simultaneous determination of eleven herbicides followed by LC-MS/MS analysis in three sugarcane-derived food matrices: juice, candy, and syrup. First, graphene oxide anchored to silica functionalized with octadecyl silane and endcapped was synthesized, which was evaluated as a sorbent in DPX. Then, after evaluating the parameters involved in DPX extraction, the method was validated following the ICH guide. As a result, the method showed acceptable linearity (r ≥ 0.99), limits of quantification (1.0 - 5.0 ng mL-1 for juice and 5.0 - 25.0 ng g - 1 for candy and syrup, varying according to the pesticide), precision, and accuracy within the limits of the literature, and recoveries ranging from 48 - 69% (juice), 34 - 89% (candy), and 28 - 76% (syrup). Finally, the developed method was successfully applied in actual samples of the three studied matrices.


Asunto(s)
Grafito , Herbicidas , Plaguicidas , Saccharum , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Grano Comestible , Óxidos , Extracción en Fase Sólida
15.
Electrophoresis ; 43(15): 1587-1600, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35531989

RESUMEN

Mass spectrometry (MS) is a fundamental technique to identify compounds by their mass-to-charge ratio. It is known that MS can only detect target compounds when they are converted to ions in the gas phase. The ionization procedure is considered one of the most critical steps, and there are distinct techniques for it. One of them is electron ionization (EI), a widely used hard-ionization technique capable of generating several ions due to the excess energy employed. The existence of distinct ionization mechanisms turns EI capable of producing a fingerprint-like spectrum for each molecule. So, it is an essential technique for obtaining structural information. EI is often combined with chromatography to obtain a practical introduction of pretreated samples despite its excellent performance. EI-MS has been applied coupled with gas chromatography (GC) since the 1960s as both are very compatible. Currently, analytes of interest are more suitable for liquid chromatography (LC) analysis, so there are researchers dedicated to developing suitable interfaces for coupling LC and EI-MS. EI excels, as a reliable technique to fill the gap between GC and LC, possibly allowing them to coexist in a single instrument. In this work, the authors will present the fundamentals of EI-MS, emphasizing the development over the years, coupling with gas and LC, and future trends.


Asunto(s)
Electrones , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Iones , Espectrometría de Masas
16.
Electrophoresis ; 43(15): 1567-1576, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567359

RESUMEN

Dynamic single-drop microextraction (SDME) was automatized employing an Arduino-based lab-made Cartesian robot and implemented to determine parabens in wastewater samples in combination with liquid chromatography-tandem mass spectrometry. A dedicated Arduino sketch controls the auto-performance of all the stages of the SDME process, including syringe filling, drop exposition, solvent recycling, and extract collection. Univariate and multivariate experiments investigated the main variables affecting the SDME performance, including robot-dependent and additional operational parameters. Under selected conditions, limit of detections were established at 0.3 µg/L for all the analytes, and the method provided linear responses in the range between 0.6 and 10 µg/L, with adequate reproducibility, measured as intraday relative standard deviations (RSDs) between 5.54% and 17.94%, (n = 6), and inter-days RSDs between 8.97% and 16.49% (n = 9). The robot-assisted technique eased the control of dynamic SDME, making the process more feasible, robust, and reliable so that the developed setup demonstrated to be a competitive strategy for the automated extraction of organic pollutants from water samples.


Asunto(s)
Microextracción en Fase Líquida , Robótica , Contaminantes Químicos del Agua , Cromatografía Liquida , Microextracción en Fase Líquida/métodos , Parabenos/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
17.
J Chromatogr A ; 1674: 463143, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35588591

RESUMEN

A 25 µm i.d x 1.2 m length PS-DVB porous layer open tubular column (PLOT) was prepared and assessed in the configuration of a nano liquid chromatography coupled to an electron ionization mass spectrometry system (OT-nanoLC-EI-Ms), via the direct insertion of the column outlet into the ionization source. The developed system's operational parameters were comprehensively studied, and the setup performance was investigated employing both unidimensional and column switching configurations. As a result, the OT-nanoLC-EI-MS system demonstrated competitive applicability in separating non-amenable ESI compounds, such as polyaromatic hydrocarbons (PAHs) and non-amenable GC compounds such as thermolabile pesticides. Furthermore, with excellent chromatographic performance, the PLOT columns can work under more compatible EI-detection conditions - such as the elution with 100% organic solvent. For example, PAHs retention factors ranged between 1.5 and 2.2 for 100% MeCN mobile phase, and more than 33,000 plates per meter for naphthalene at 50 nL/min flow rate. In analyzing thermolabile pesticides, the column switching PLOT-nanoLC-EI-MS system provided LODs of 25 µg/L, demonstrating suitable intra e interday reproducibility (% RSD < 13%, n = 3), and possibilities the direct injection of raw samples with suitable robustness.


Asunto(s)
Plaguicidas , Espectrometría de Masa por Ionización de Electrospray , Electrones , Porosidad , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
18.
Electrophoresis ; 43(15): 1555-1566, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35430741

RESUMEN

Cannabinoids are pharmacologically active compounds present in cannabis plants, which have become important research topics in the modern toxicological and medical research fields. Not only is cannabis the most used drug globally, but also cannabinoids have a growing use to treat a series of diseases. Therefore, new, fast, and efficient analytical methods for analyzing these substances in different matrices are demanded. This study developed a new packed-in-tube solid-phase microextraction (IT-SPME) method coupled to liquid chromatography with tandem mass spectrometry (LC-MS/MS), for the automated microextraction of seven cannabinoids from human urine. Packed IT-SPME microcolumns were prepared in (508 µm i.d. × 50 mm) stainless-steel hardware; each one required only 12 mg of sorbent phase. Different sorbents were evaluated; fractional factorial design 24-1 and a central composite design were employed for microextraction optimization. Under optimized conditions, the developed method was a fast and straightforward approach. Only 250 µl of urine sample was needed, and no hydrolysis was required. The sample pretreatment included only dilution and centrifugation steps (8 min), whereas the complete IT-SPME-LC-MS/MS method took another 12 min, with a sample throughput of 3 samples h-1 . The developed method presented adequate precision, accuracy and linearity; R2 values ranged from 0.990 to 0.997, in the range of 10-1000 ng ml-1 . The lower limits of quantification varied from 10 to 25 ng ml-1 . Finally, the method was successfully applied to analyze 20 actual urine samples, and the IT-SPME microcolumn was reused over 150 times.


Asunto(s)
Cannabinoides , Microextracción en Fase Sólida , Cromatografía Liquida/métodos , Humanos , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
19.
J Environ Sci Health B ; 57(4): 252-262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264079

RESUMEN

A miniaturized QuEChERS extraction method followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed to analyze thiamethoxam and imidacloprid in 0.3 g of lyophilized Africanized honey bees (Apis mellifera L.). The work aimed to estimate honey bees' exposure to pesticides at the nanogram/gram (ng g-1) levels, using small sample and reagent quantities. Low amounts of solvents and salts were employed - 15× less than used in traditional methods. Average recoveries ranged from 64.5% to 99.7%, with repeatability below 20% for samples spiked at 3 and 167 ng g-1. LOD and LOQ were 0.7, and 3 ng g-1 for both pesticides. Applying the proposed approach, honey bee samples from different apiaries from the State of São Paulo (Brazil) were analyzed. The pesticides were detected in concentrations between 7.0 and 27.0 ng g-1. Thus, the proposed method can be used as a greener alternative to analyze the two neonicotinoids at trace levels in small quantities of bees, consequently saving chemicals and waste.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Abejas , Brasil , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Insecticidas/análisis , Insecticidas/toxicidad , Neonicotinoides , Nitrocompuestos/toxicidad , Plaguicidas/análisis , Espectrometría de Masas en Tándem
20.
J Chromatogr A ; 1668: 462925, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35263675

RESUMEN

Miniaturized liquid chromatography (LC) has been recognized as one of the most important analytical methods in several research fields. Reduced analytical work-scale provides superior chromatographic resolution and decreases sample and organic solvent consumption. However, frequent clogging of tubing connections and use of small sample volumes are significant limitations when high throughput and sensitive analyses are required. Effective sample preparation could help to overcome these limitations. Online coupling of sample preparation techniques (such as column switching and in-tube solid-phase microextraction) with these miniaturized systems may result in more sensitive and reproducible analyses, improving analytical efficiency. This review describes the most common online miniaturized LC configurations, and the main applications of current online sample preparation techniques coupled to miniaturized LC systems in the bioanalytical, omics, and environmental areas. Relevant features, and challenges of these systems, and innovative sorbents, including restricted access materials, monoliths, and immunosorbents is also discussed.


Asunto(s)
Microextracción en Fase Sólida , Manejo de Especímenes , Cromatografía Liquida/métodos , Inmunoadsorbentes , Microextracción en Fase Sólida/métodos , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA