Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(27): 17991-6, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27328375

RESUMEN

The transport properties of water through a nanochannel influenced by the direction of an external electric field has been investigated by using molecular dynamics simulations. Water molecules flow unidirectionally across the nanochannel under a uniform external electric field without an osmotic pressure. It is found that the direction of the external field plays an important role in the interactions and dipole orientations of water molecules in the nanochannel, accordingly changing the net water flux dramatically. Most importantly, a critical angle (θC) between the external field and the nanochannel axis is found. The average net water flux increases as θ increases for θ≤θC but decreases sharply to a near-zero value for a further increase of θ. The maximum value of the average net water flux is 7.33 times as high as the value when the electric field is along the nanochannel axis. Our findings are of great practical importance for nanomolecular engineering, which provide a possible strategy for designing novel controllable water nanopumps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA