Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt B): 1049-1060, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276514

RESUMEN

HYPOTHESIS: The structural details of foams made with pea albumins are affected by the pH of the initial solution and followed heat treatment. EXPERIMENTS: An in situ, time-resolved investigation of foams prepared with pea albumins was conducted using small-angle neutron scattering (SANS) in combination with imaging and conductance measurements. Solutions were tested at pH three pH values (3, 4.5, and 8) before and after heating (90 °C for 1 and 5 min). FINDINGS: The characteristic structures present in the foam from the nano to the meso-scale differed during drainage depending on solution pH. Foams obtained at pH 3, had the largest bubble radius and thinnest plateau border, as well as the highest extent of liquid drainage. At pH 4.5, close to the isoelectric point of the proteins, foams displayed similar bubbles' behavior to those at pH 8, but with the largest film thickness. In this case, the proteins were extensively aggregated. Heating of the solutions prior to foaming did not significantly affect the foam aging regardless of pH. The quantification of specific surface areas and film thickness over time without sample disruption shows to be a powerful approach to designing foam structures.

2.
Soft Matter ; 18(46): 8733-8747, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36341841

RESUMEN

Liquid foams are multi-scale structures whose structural characterization requires the combination of very different techniques. This inherently complex task is made more difficult by the fact that foams are also intrinsically unstable systems and that their properties are highly dependent on the production protocol and sample container. To tackle these issues, a new device has been developed that enables the simultaneous time-resolved investigation of foams by small-angle neutron scattering (SANS), electrical conductivity, and bubbles imaging. This device allows the characterization of the foam and its aging from nanometer up to centimeter scale in a single experiment. A specific SANS model was developed to quantitatively adjust the scattering intensity from the dry foam. Structural features such as the liquid fraction, specific surface area of the Plateau borders and inter-bubble films, and thin film thickness were deduced from this analysis, and some of these values were compared with values extracted from the other applied techniques. This approach has been applied to a surfactant-stabilized liquid foam under free drainage and the underlying foam destabilization mechanisms were discussed with unprecedented detail. For example, the information extracted from the image analysis and SANS data allows for the first time to determine the disjoining pressure vs. thickness isotherm in a real, draining foam.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA