Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35808174

RESUMEN

Obstacle detection for autonomous navigation through semantic image segmentation using neural networks has grown in popularity for use in unmanned ground and surface vehicles because of its ability to rapidly create a highly accurate pixel-wise classification of complex scenes. Due to the lack of available training data, semantic networks are rarely applied to navigation in complex water scenes such as rivers, creeks, canals, and harbors. This work seeks to address the issue by making a one-of-its-kind River Obstacle Segmentation En-Route By USV Dataset (ROSEBUD) publicly available for use in robotic SLAM applications that map water and non-water entities in fluvial images from the water level. ROSEBUD provides a challenging baseline for surface navigation in complex environments using complex fluvial scenes. The dataset contains 549 images encompassing various water qualities, seasons, and obstacle types that were taken on narrow inland rivers and then hand annotated for use in semantic network training. The difference between the ROSEBUD dataset and existing marine datasets was verified. Two state-of-the-art networks were trained on existing water segmentation datasets and tested for generalization to the ROSEBUD dataset. Results from further training show that modern semantic networks custom made for water recognition, and trained on marine images, can properly segment large areas, but they struggle to properly segment small obstacles in fluvial scenes without further training on the ROSEBUD dataset.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Visión Monocular , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Ríos , Semántica
2.
Front Robot AI ; 8: 739023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616776

RESUMEN

This paper presents a framework to alleviate the Deep Reinforcement Learning (DRL) training data sparsity problem that is present in challenging domains by creating a DRL agent training and vehicle integration methodology. The methodology leverages accessible domains to train an agent to solve navigational problems such as obstacle avoidance and allows the agent to generalize to challenging and inaccessible domains such as those present in marine environments with minimal further training. This is done by integrating a DRL agent at a high level of vehicle control and leveraging existing path planning and proven low-level control methodologies that are utilized in multiple domains. An autonomy package with a tertiary multilevel controller is developed to enable the DRL agent to interface at the prescribed high control level and thus be separated from vehicle dynamics and environmental constraints. An example Deep Q Network (DQN) employing this methodology for obstacle avoidance is trained in a simulated ground environment, and then its ability to generalize across domains is experimentally validated. Experimental validation utilized a simulated water surface environment and real-world deployment of ground and water robotic platforms. This methodology, when used, shows that it is possible to leverage accessible and data rich domains, such as ground, to effectively develop marine DRL agents for use on Autonomous Surface Vehicle (ASV) navigation. This will allow rapid and iterative agent development without the risk of ASV loss, the cost and logistic overhead of marine deployment, and allow landlocked institutions to develop agents for marine applications.

3.
Front Robot AI ; 8: 621755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791340

RESUMEN

One of the main limiting factors in deployment of marine robots is the issue of energy sustainability. This is particularly challenging for traditional propeller-driven autonomous underwater vehicles which operate using energy intensive thrusters. One emerging technology to enable persistent performance is the use of autonomous recharging and retasking through underwater docking stations. This paper presents an integrated navigational algorithm to facilitate reliable underwater docking of autonomous underwater vehicles. Specifically, the algorithm dynamically re-plans Dubins paths to create an efficient trajectory from the current vehicle position through approach into terminal homing. The path is followed using integral line of sight control until handoff to the terminal homing method. A light tracking algorithm drives the vehicle from the handoff location into the dock. In experimental testing using an Oceanserver Iver3 and Bluefin SandShark, the approach phase reached the target handoff within 2 m in 48 of 48 tests. The terminal homing phase was capable of handling up to 5 m offsets with approximately 70% accuracy (12 of 17 tests). In the event of failed docking, a Dubins path is generated to efficiently drive the vehicle to re-attempt docking. The vehicle should be able to successfully dock in the majority of foreseeable scenarios when re-attempts are considered. This method, when combined with recent work on docking station design, intelligent cooperative path planning, underwater communication, and underwater power transfer, will enable true persistent undersea operation in the extremely dynamic ocean environment.

4.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562551

RESUMEN

This paper presents results from the integration of a compact quantum magnetometer system and an agile underwater glider for magnetic survey. A highly maneuverable underwater glider, ROUGHIE, was customized to carry an increased payload and reduce the vehicle's magnetic signature. A sensor suite composed of a vector and scalar magnetometer was mounted in an external boom at the rear of the vehicle. The combined system was deployed in a constrained pool environment to detect seeded magnetic targets and create a magnetic map of the test area. Presented is a systematic magnetic disturbance reduction process, test procedure for anomaly mapping, and results from constrained operation featuring underwater motion capture system for ground truth localization. Validation in the noisy and constrained pool environment creates a trajectory towards affordable littoral magnetic anomaly mapping infrastructure. Such a marine sensor technology will be capable of extended operation in challenging areas while providing high-resolution, timely magnetic data to operators for automated detection and classification of marine objects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA