Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895201

RESUMEN

Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.

2.
bioRxiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37292919

RESUMEN

Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights: Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA