Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(30): eadm9278, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39047105

RESUMEN

Quantum interference is a central resource in many quantum-enhanced tasks, from computation to communication. While usually occurring between identical photons, it can also be enabled by performing projective measurements that render the photons indistinguishable, a process known as quantum erasing. Structured light forms another hallmark of photonics, achieved by manipulating the degrees of freedom of light, and enables a multitude of applications in both classical and quantum regimes. By combining these ideas, we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states with spatially structured coalescence along the transverse profile, a type of quantum mode with no classical counterpart. To achieve this, we locally tune the distinguishability of a photon pair by spatially structuring the polarization and creating a structured quantum eraser. We believe that these spatially engineered multiphoton quantum states may be of significance in fields such as quantum metrology, microscopy, and communication.

2.
Opt Express ; 32(10): 18257-18267, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858987

RESUMEN

We present a source of indistinguishable photons at telecom wavelength, synchronized to an external clock, for the use in distributed quantum networks. We characterize the indistinguishability of photons generated in independent parametric down-conversion events using a Hong-Ou-Mandel interferometer, and show non-classical interference with coalescence, C = 0.83(5). We also demonstrate the synchronization to an external clock within sub-picosecond timing jitter, which is significantly shorter than the single-photon wavepacket duration of ≈ 35 ps. Our source enables scalable quantum protocols over multi-node, long-distance optical networks using network-based clock recovery systems.

3.
Rev Sci Instrum ; 90(11): 113104, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31779388

RESUMEN

Heralded single photon sources (HSPSs) from spontaneous parametric down-conversion are widely used as single photon sources. We study the photon number statistics of an HSPS carrying orbital angular momentum in our laboratory and observe the sub-Poissonian statistics using only photodetectors and an oscilloscope.

4.
Opt Lett ; 43(11): 2579-2582, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856434

RESUMEN

In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

5.
Chaos ; 27(1): 013115, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28147493

RESUMEN

In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA