Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 65(3): 391-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22921840

RESUMEN

Using oligonucleotide-based drugs to modulate gene expression has opened a new avenue for drug discovery. In particular small interfering RNAs (siRNAs) are being rapidly recognized as promising therapeutic tools, but their poor bioavailability limits the full realization of their clinical potential. In recent years, cumulating evidence has emerged for the role of membrane vesicles, secreted by most cells and found in all body fluids, as key mediators of information transmission between cells. Importantly, a sub-group of these termed exosomes, have recently been shown to contain various RNA species and to mediate their horizontal transfer to neighbouring- or distant recipient cells. Here, we provide a brief overview on membrane vesicles and their role in exchange of genetic information. We also describe how these natural carriers of genetic material can be harnessed to overcome the obstacle of poor delivery and allow efficient systemic delivery of exogenous siRNA across biological barriers such as the blood-brain barrier.


Asunto(s)
Exosomas/metabolismo , Oligonucleótidos/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Mastocitos/metabolismo
2.
J Control Release ; 161(2): 635-44, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22138068

RESUMEN

Cell-derived membrane vesicles (CMVs) are endogenous carriers transporting proteins and nucleic acids between cells. They appear to play an important role in many disease processes, most notably inflammation and cancer, where their efficient functional delivery of biological cargo seems to contribute to the disease progress. CMVs encompass a variety of submicron vesicular structures that include exosomes and shedding vesicles. The lipids, proteins, mRNA and microRNA (miRNA) delivered by these vesicles change the phenotype of the receiving cells. CMVs have created excitement in the drug delivery field, because they appear to have multiple advantages over current artificial drug delivery systems. Two approaches to exploit CMVs for delivery of exogenous therapeutic cargoes in vivo are currently considered. One approach is based on engineering of natural CMVs in order to target certain cell types using CMVs loaded with therapeutic compounds. In the second approach, essential characteristics of CMVs are being used to design nano-scaled drug delivery systems. Although a number of limiting factors in the clinical translation of the exciting research findings so far exist, both approaches are promising for the development of a potentially novel generation of drug carriers based on CMVs.


Asunto(s)
Micropartículas Derivadas de Células , Portadores de Fármacos , Exosomas , Animales , Comunicación Celular , Micropartículas Derivadas de Células/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Exosomas/química , Humanos
3.
Blood ; 119(3): 857-60, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22130801

RESUMEN

Enhanced erythropoietic drive and iron deficiency both influence iron homeostasis through the suppression of the iron regulatory hormone hepcidin. Hypoxia also suppresses hepcidin through a mechanism that is unknown. We measured iron indices and plasma hepcidin levels in healthy volunteers during a 7-day sojourn to high altitude (4340 m above sea level), with and without prior intravenous iron loading. Without prior iron loading, a rapid reduction in plasma hepcidin was observed that was almost complete by the second day at altitude. This occurred before any index of iron availability had changed. Prior iron loading delayed the decrease in hepcidin until after the transferrin saturation, but not the ferritin concentration, had normalized. We conclude that hepcidin suppression by the hypoxia of high altitude is not driven by a reduction in iron stores.


Asunto(s)
Altitud , Péptidos Catiónicos Antimicrobianos/metabolismo , Regulación de la Expresión Génica , Hipoxia/metabolismo , Trastornos del Metabolismo del Hierro/metabolismo , Hierro/metabolismo , Adulto , Estudios de Casos y Controles , Eritropoyesis/genética , Eritropoyesis/fisiología , Eritropoyetina/metabolismo , Ferritinas/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Hepcidinas , Homeostasis , Humanos , Hipoxia/complicaciones , Trastornos del Metabolismo del Hierro/etiología , Hierro de la Dieta/metabolismo , Transferrina/genética , Transferrina/metabolismo , Talasemia beta/metabolismo
5.
Bioessays ; 33(10): 737-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21932222

RESUMEN

The demonstration that dendritic cell (DC)-derived exosomes can be exploited for targeted RNAi delivery to the brain after systemic injection provides the first proof-of-concept for the potential of these naturally occurring vesicles as vehicles of drug delivery. As well as being amenable to existing in vivo targeting strategies already in use for viruses and liposomes, this novel approach offers the added advantages of in vivo safety and low immunogenicity. Fulfilment of the potential of exosome delivery methods warrants a better understanding of their biology, as well as the development of novel production, characterisation, targeting and cargo-loading nanotechnologies. Ultimately, exosome-mediated drug delivery promises to overcome important challenges in the field of therapeutics, such as delivery of drugs across otherwise impermeable biological barriers, such as the blood brain barrier, and using patient-derived tissue as a source of individualised and biocompatible therapeutic drug delivery vehicles.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Exosomas/metabolismo , Nanotecnología/métodos , Interferencia de ARN , Barrera Hematoencefálica/metabolismo , Células Dendríticas/metabolismo , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Glicoproteínas/administración & dosificación , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Virus de la Rabia/química , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
J Immunol ; 187(4): 1617-25, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21742973

RESUMEN

IDO is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO-expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. Because mammalian cells cannot synthesize tryptophan, it remains unclear how IDO(+) tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO(+) tumor cells express a novel amino acid transporter, which accounts for ∼50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO(+) tumors relative to tryptophan uptake through the low-affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO-mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan-depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation.


Asunto(s)
Sistema de Transporte de Aminoácidos L/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Neoplasias/inmunología , Triptófano/inmunología , Sistema de Transporte de Aminoácidos L/metabolismo , Animales , Transporte Biológico/inmunología , Proliferación Celular , Supervivencia Celular/inmunología , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Neoplasias/enzimología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Triptófano/metabolismo
7.
Nat Biotechnol ; 29(4): 341-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21423189

RESUMEN

To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes-endogenous nano-vesicles that transport RNAs and proteins-can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome production. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. Intravenously injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice.


Asunto(s)
Encéfalo/metabolismo , Exosomas/metabolismo , Técnicas de Transferencia de Gen , ARN Interferente Pequeño/administración & dosificación , Enfermedad de Alzheimer/terapia , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Línea Celular , Células Dendríticas/metabolismo , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Virus de la Rabia/metabolismo
8.
J Biol Chem ; 286(6): 4090-7, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20966077

RESUMEN

Hepcidin is a liver-derived hormone with a key role in iron homeostasis. In addition to iron, it is regulated by inflammation and hypoxia, although mechanisms of hypoxic regulation remain unclear. In hepatocytes, hepcidin is induced by bone morphogenetic proteins (BMPs) through a receptor complex requiring hemojuvelin (HJV) as a co-receptor. Type II transmembrane serine proteinase (TMPRSS6) antagonizes hepcidin induction by BMPs by cleaving HJV from the cell membrane. Inactivating mutations in TMPRSS6 lead to elevated hepcidin levels and consequent iron deficiency anemia. Here we demonstrate that TMPRSS6 is up-regulated in hepatic cell lines by hypoxia and by other activators of hypoxia-inducible factor (HIF). We show that TMPRSS6 expression is regulated by both HIF-1α and HIF-2α. This HIF-dependent up-regulation of TMPRSS6 increases membrane HJV shedding and decreases hepcidin promoter responsiveness to BMP signaling in hepatocytes. Our results reveal a potential role for TMPRSS6 in hepcidin regulation by hypoxia and provide a new molecular link between oxygen sensing and iron homeostasis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Membrana Celular/enzimología , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal , Anemia Ferropénica/enzimología , Anemia Ferropénica/genética , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Hipoxia de la Célula/fisiología , Línea Celular , Proteína de la Hemocromatosis , Hepcidinas , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de la Membrana/genética , Mutación , Oxígeno/metabolismo , Serina Endopeptidasas/genética , Regulación hacia Arriba/genética
9.
Blood ; 113(7): 1555-63, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19047680

RESUMEN

Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor-beta superfamily and has been identified in different contexts as a hypoxia-inducible gene product and as a molecule involved in hepcidin regulation. The biology of iron and oxygen is closely related, and known regulatory pathways involving hypoxia-inducible factor (HIF) and iron-regulatory proteins (IRPs) are responsive to both these stimuli. We therefore sought to characterize the regulation of GDF15 by iron and oxygen and to define the involvement or otherwise of HIF and IRP pathways. Here we show that GDF15 is strongly up-regulated by stimuli that deplete cells of iron and that this response is specifically antagonized by the reprovision of iron. GDF15 exhibits greater sensitivity to iron depletion than hypoxia, and responses to hypoxia and iron depletion are independent of HIF and IRP activation, suggesting a novel mechanism of regulation. We also report significant induction of serum GDF15 in iron-deficient subjects and after administration of an iron chelator to normal subjects. These findings indicate that GDF15 can be induced by pathophysiologic changes in iron availability, raising important questions about the mechanism of regulation and its role in iron homeostasis.


Asunto(s)
Anemia Ferropénica/metabolismo , Deferoxamina/administración & dosificación , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/genética , Hierro/metabolismo , Adenocarcinoma , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama , Carcinoma Hepatocelular , Proteínas de Transporte de Catión/genética , Hipoxia de la Célula/fisiología , Células HeLa , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/citología , Neoplasias Renales , Proteínas de la Membrana/genética , Oxígeno/metabolismo , Sideróforos/administración & dosificación , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Proteína wnt2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA