Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small Methods ; 6(9): e2200493, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35973943

RESUMEN

In this report, a large-area laser beam induced current microscope that has been adapted to perform intensity modulated photocurrent spectroscopy (IMPS) in an imaging mode is described. Microscopy-based IMPS method provides a spatial resolution of the frequency domain response of the solar cell, allowing correlation of the optoelectronic response with a particular interface, bulk material, specific transport layer, or transport parameter. The system is applied to study degradation effects in back-contact perovskite cells where it is found to readily differentiate areas based on their markedly different frequency response. Using the diffusion-recombination model, the IMPS response is modeled for a sandwich structure and extended for the special case of lateral diffusion in a back-contact cell. In the low-frequency limit, the model is used to calculate spatial maps of the carrier ambipolar diffusion length. The observed frequency response of IMPS images is then discussed.

2.
Ann Bot ; 128(1): 17-30, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33615337

RESUMEN

BACKGROUND: The fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known. METHODS: A particle-induced X-ray emission (µPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D. linearis during uptake, translocation and sequestration processes. RESULTS: In the roots >80 % of REEs and Al were in apoplastic fractions, among which the REEs were most significantly co-localized with Si and phosphorus (P) in the epidermis. In the xylem sap, REEs were nearly 100 % present as REEH3SiO42+, without significant differences between the REEs, while 24-45 % of Al was present as Al-citrate and only 1.7-16 % Al was present as AlH3SiO42+. In the pinnules, REEs were mainly concentrated in necrotic lesions and in the epidermis, and REEs and Al were possibly co-deposited within phytoliths (SiO2). Different REEs had similar spatial localizations in the epidermis and exodermis of roots, the necrosis, veins and epidermis of pinnae of D. linearis. CONCLUSIONS: We posit that Si plays a critical role in REE and Al tolerance within the root apoplast, transport within the vascular bundle and sequestration within the blade of D. linearis.


Asunto(s)
Helechos , Metales de Tierras Raras , Aluminio , Humanos , Silicio , Dióxido de Silicio
3.
Plant Physiol ; 182(4): 1869-1882, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31974126

RESUMEN

Understanding the distribution of elements in plants is important for researchers across a broad range of fields, including plant molecular biology, agronomy, plant physiology, plant nutrition, and ionomics. However, it is often challenging to evaluate the applicability of the wide range of techniques available, with each having its own strengths and limitations. Here, we compare scanning/transmission electron microscopy-based energy-dispersive x-ray spectroscopy, x-ray fluorescence microscopy, particle-induced x-ray emission, laser ablation inductively coupled plasma-mass spectrometry, nanoscale secondary ion mass spectroscopy, autoradiography, and confocal microscopy with fluorophores. For these various techniques, we compare their accessibility, their ability to analyze hydrated tissues (without sample preparation) and suitability for in vivo analyses, as well as examining their most important analytical merits, such as resolution, sensitivity, depth of analysis, and the range of elements that can be analyzed. We hope that this information will assist other researchers to select, access, and evaluate the approach that is most useful in their particular research program or application.


Asunto(s)
Plantas/química , Espectrometría de Masas , Microscopía Confocal , Microscopía Electrónica , Espectrometría por Rayos X
4.
PLoS One ; 6(11): e27578, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22087339

RESUMEN

The aim of this study was to determine specific distribution of metals in the termite Tumulitermes tumuli (Froggatt) and identify specific organs within the termite that host elevated metals and therefore play an important role in the regulation and transfer of these back into the environment. Like other insects, termites bio-accumulate essential metals to reinforce cuticular structures and utilize storage detoxification for other metals including Ca, P, Mg and K. Previously, Mn and Zn have been found concentrated in mandible tips and are associated with increased hardness whereas Ca, P, Mg and K are accumulated in Malpighian tubules. Using high resolution Particle Induced X-Ray Emission (PIXE) mapping of whole termites and Scanning Electron Microscope (SEM) Energy Dispersive X-ray (EDX) spot analysis, localised accumulations of metals in the termite T. tumuli were identified. Tumulitermes tumuli was found to have proportionally high Mn concentrations in mandible tips. Malpighian tubules had significant enrichment of Zn (1.6%), Mg (4.9%), P (6.8%), Ca (2.7%) and K (2.4%). Synchrotron scanning X-ray Fluorescence Microprobe (XFM) mapping demonstrated two different concretion types defined by the mutually exclusive presence of Ca and Zn. In-situ SEM EDX realisation of these concretions is problematic due to the excitation volume caused by operating conditions required to detect minor amounts of Zn in the presence of significant amounts of Na. For this reason, previous researchers have not demonstrated this surprising finding.


Asunto(s)
Calcio/análisis , Isópteros/química , Túbulos de Malpighi/química , Zinc/análisis , Animales , Mandíbula/química , Metales/análisis , Espectrometría por Rayos X , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA