Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiome ; 10(1): 151, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138466

RESUMEN

BACKGROUND: The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater. RESULTS: Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity. CONCLUSION: This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large. Video Abstract.


Asunto(s)
Antozoos , Quitinasas , Gammaproteobacteria , Microbiota , Rhodobacteraceae , Animales , Ancirinas , Antozoos/microbiología , Quitina , Metagenómica/métodos , Microbiota/genética , Oxígeno , Filogenia , Proteínas Serina-Treonina Quinasas , Simbiosis
2.
Antibiotics (Basel) ; 11(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35884142

RESUMEN

The excessive use of antibiotics has triggered the appearance of new resistant strains, which is why great interest has been taken in the search for new bioactive compounds capable of overcoming this emergency in recent years. Massive sequencing tools have enabled the detection of new microorganisms that cannot be cultured in a laboratory, thus opening the door to the search for new biosynthetic genes. The great variety in oceanic environments in terms of pressure, salinity, temperature, and nutrients enables marine microorganisms to develop unique biochemical and physiological properties for their survival, enhancing the production of secondary metabolites that can vary from those produced by terrestrial microorganisms. We performed a search for type I PKS genes in metagenomes obtained from the marine sediments of the deep waters of the Gulf of Mexico using Hidden Markov Models. More than 2000 candidate genes were detected in the metagenomes that code for type I PKS domains, while biosynthetic pathways that may code for other secondary metabolites were also detected. Our research demonstrates the great potential use of the marine sediments of the Gulf of Mexico for identifying genes that code for new secondary metabolites.

3.
Front Microbiol ; 13: 840408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586858

RESUMEN

Although various studies have investigated osmoadaptations of halophilic fungi to saline conditions, only few analyzed the fungal mechanisms occurring at saturated NaCl concentrations. Halophilic Aspergillus sydowii is a model organism for the study of molecular adaptations of filamentous fungi to hyperosmolarity. For the first time a multi-omics approach (i.e., transcriptomics and metabolomics) was used to compare A. sydowii at saturated concentration (5.13 M NaCl) to optimal salinity (1 M NaCl). Analysis revealed 1,842 genes differentially expressed of which 704 were overexpressed. Most differentially expressed genes were involved in metabolism and signal transduction. A gene ontology multi-scale network showed that ATP binding constituted the main network node with direct interactions to phosphorelay signal transduction, polysaccharide metabolism, and transferase activity. Free amino acids significantly decreased and amino acid metabolism was reprogrammed at 5.13 M NaCl. mRNA transcriptional analysis revealed upregulation of genes involved in methionine and cysteine biosynthesis at extreme water deprivation by NaCl. No modifications of membrane fatty acid composition occurred. Upregulated genes were involved in high-osmolarity glycerol signal transduction pathways, biosynthesis of ß-1,3-glucans, and cross-membrane ion transporters. Downregulated genes were related to the synthesis of chitin, mannose, cell wall proteins, starvation, pheromone synthesis, and cell cycle. Non-coding RNAs represented the 20% of the total transcripts with 7% classified as long non-coding RNAs (lncRNAs). The 42% and 69% of the total lncRNAs and RNAs encoding transcription factors, respectively, were differentially expressed. A network analysis showed that differentially expressed lncRNAs and RNAs coding transcriptional factors were mainly related to the regulation of metabolic processes, protein phosphorylation, protein kinase activity, and plasma membrane composition. Metabolomic analyses revealed more complex and unknown metabolites at saturated NaCl concentration than at optimal salinity. This study is the first attempt to unravel the molecular ecology of an ascomycetous fungus at extreme water deprivation by NaCl (5.13 M). This work also represents a pioneer study to investigate the importance of lncRNAs and transcriptional factors in the transcriptomic response to high NaCl stress in halophilic fungi.

4.
Fish Physiol Biochem ; 47(4): 1179-1198, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34164770

RESUMEN

The aquaculture industry's rapid growth to meet commercial demand can trigger an outbreak of infectious diseases due to high-density farming. Antibiotic overuse and misuse in fish farming and its global health consequences have led to searching for more natural alternatives such as medicinal plants. In this sense, garlic (Allium sativum) has different bioactive compounds with biological properties for animal health. Among them are the ajoene, alliin, and allicin, which confer biological properties such as growth promotion, antimicrobial, antiviral, antioxidant, and antiparasitic. Ways to use garlic in aquaculture include oil, fresh mash, aqueous extract, and garlic powder. The powder presentation is the most used in aquaculture; it is generally applied by oral administration, adding to the feed, and the dose used ranges from 0.05 to 40 g/kg of feed. Garlic has been used in the aquaculture of different species such as rainbow trout (Oncorhynchus mykiss), spotted grouper (Epinephelus coioides), catfish (Clarias gariepinus), tilapia (Oreochromis niloticus), guppy fish (Poecilia reticulata), goldfish (Carassius auratus), and barramundi (Lates calcarifer). In addition to its properties, garlic's usage became popular, thanks to its low cost, easy incorporation into food, and little environmental impact. Therefore, its application can be an effective solution to combat diseases, improve organisms' health using natural supplies, and as an alternative to antibiotics. This review reports and discusses plant-derived products' beneficial properties, emphasizing garlic and its usages in fish aquaculture.


Asunto(s)
Acuicultura , Ajo , Adyuvantes Inmunológicos/farmacología , Animales , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Peces/crecimiento & desarrollo , Peces/inmunología , Peces/metabolismo , Peces/microbiología
5.
PeerJ ; 9: e12474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993013

RESUMEN

Marine sediments harbor an outstanding level of microbial diversity supporting diverse metabolic activities. Sediments in the Gulf of Mexico (GoM) are subjected to anthropic stressors including oil pollution with potential effects on microbial community structure and function that impact biogeochemical cycling. We used metagenomic analyses to provide significant insight into the potential metabolic capacity of the microbial community in Southern GoM deep sediments. We identified genes for hydrocarbon, nitrogen and sulfur metabolism mostly affiliated with Alpha and Betaproteobacteria, Acidobacteria, Chloroflexi and Firmicutes, in relation to the use of alternative carbon and energy sources to thrive under limiting growth conditions, and metabolic strategies to cope with environmental stressors. In addition, results show amino acids metabolism could be associated with sulfur metabolism carried out by Acidobacteria, Chloroflexi and Firmicutes, and may play a crucial role as a central carbon source to favor bacterial growth. We identified the tricarboxylic acid cycle (TCA) and aspartate, glutamate, glyoxylate and leucine degradation pathways, as part of the core carbon metabolism across samples. Further, microbial communities from the continental slope and abyssal plain show differential metabolic capacities to cope with environmental stressors such as oxidative stress and carbon limiting growth conditions, respectively. This research combined taxonomic and functional information of the microbial community from Southern GoM sediments to provide fundamental knowledge that links the prokaryotic structure to its potential function and which can be used as a baseline for future studies to model microbial community responses to environmental perturbations, as well as to develop more accurate mitigation and conservation strategies.

6.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193237

RESUMEN

We report three metagenome-assembled genomes (MAGs) of Planktomarina strains from coastal seawater (Portugal) to help illuminate the functions of understudied Rhodobacteraceae bacteria in marine environments. The MAGs encode proteins involved in aerobic anoxygenic photosynthesis and a versatile carbohydrate metabolism, strengthening the role of Planktomarina species in oceanic carbon cycling.

7.
Int J Food Sci Nutr ; 71(1): 74-83, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31170834

RESUMEN

This study evaluated the effect of using arabinoxylans (AX) and gelled arabinoxylans (AxGel) as anti-obesogenic agents on the faecal microbiota of rats fed with a high-fat (HF) diet. Results revealed that the HF content in diet caused obesity in rats and alterations in the taxonomic and functional profiles of faecal microbiota. However, these effects were lessened when AX and AxGel were used as ingredients of the HF diet. Metabolisms of amino acids and energy, as well as genetic information processing, were negatively affected when the rats consumed the HF diet; however, this effect was not observed if AX and AxGel were included as part of the diet formulation. Results suggest that AX may act as a prebiotic agent. Therefore, AX and AxGel could be considered as hypothetical protectors of the intestinal microbiota against HF consumption.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Xilanos/farmacología , Animales , Bacterias/clasificación , Bacterias/genética , Índice de Masa Corporal , Modelos Animales de Enfermedad , Grano Comestible , Heces/microbiología , Microbioma Gastrointestinal/genética , Masculino , Ratones Obesos , Obesidad , Prebióticos , ARN Ribosómico 16S/genética , Ratas
8.
Front Microbiol ; 10: 1914, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551941

RESUMEN

Earth's temperature is rising, and with this increase, fungal communities are responding and affecting soil carbon processes. At a long-term soil-warming experiment in a boreal forest in interior Alaska, warming and warming-associated drying alters the function of microbes, and thus, decomposition of carbon. But what genetic mechanisms and resource allocation strategies are behind these community shifts and soil carbon changes? Here, we evaluate fungal resource allocation efforts under long-term experimental warming (including associated drying) using soil metatranscriptomics. We profiled resource allocation efforts toward decomposition and cell metabolic maintenance, and we characterized community composition. We found that under the warming treatment, fungi allocate resources to cell metabolic maintenance at the expense of allocating resources to decomposition. In addition, we found that fungal orders that house taxa with stress-tolerant traits were more abundant under the warmed treatment compared to control conditions. Our results suggest that the warming treatment elicits an ecological tradeoff in resource allocation in the fungal communities, with potential to change ecosystem-scale carbon dynamics. Fungi preferentially invest in mechanisms that will ensure survival under warming and drying, such as cell metabolic maintenance, rather than in decomposition. Through metatranscriptomes, we provide mechanistic insight behind the response of fungi to climate change and consequences to soil carbon processes.

9.
PLoS One ; 14(8): e0221770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31465508

RESUMEN

Diet is a primary driver of the composition of gut microbiota and is considered one of the main routes of microbial colonization. Prey identification is fundamental for correlating the diet with the presence of particular microbial groups. The present study examined how diet influenced the composition and function of the gut microbiota of the Pacific harbor seal (Phoca vitulina richardii) in order to better understand the role of prey consumption in shaping its microbiota. This species is a good indicator of the quality of the local environment due to both its foraging and haul-out site fidelity. DNA was extracted from 20 fecal samples collected from five harbor seal colonies located in Baja California, Mexico. The V4 region of 16S rRNA gene was amplified and sequenced using the Illumina technology. Results showed that the gut microbiota of the harbor seals was dominated by the phyla Firmicutes (37%), Bacteroidetes (26%) and Fusobacteria (26%) and revealed significant differences in its composition among the colonies. Funtional analysis using the PICRUSt software suggests a high number of pathways involved in the basal metabolism, such as those for carbohydrates (22%) and amino acids (20%), and those related to the degradation of persistent environmental pollutants. In addition, a DNA metabarcoding analysis of the same samples, via the amplification and sequencing of the mtRNA 16S and rRNA 18S genes, was used to identify the prey consumed by harbor seals revealing the consumption of prey with mainly demersal habits. Functional redundancy in the seal gut microbiota was observed, irrespective of diet or location. Our results indicate that the frequency of occurrence of specific prey in the harbor seal diet plays an important role in shaping the composition of the gut microbiota of harbor seals by influencing the relative abundance of specific groups of gut microorganisms. A significant relationship was found among diet, gut microbiota composition and OTUs assigned to a particular metabolic pathway.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Phoca/microbiología , Animales , Bacterias/clasificación , Bases de Datos como Asunto , Redes y Vías Metabólicas , México , Filogenia , Conducta Predatoria
10.
Environ Microbiol ; 21(11): 4046-4061, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336033

RESUMEN

Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/genética , Basidiomycota/clasificación , Basidiomycota/genética , Micobioma/genética , Ascomicetos/aislamiento & purificación , Basidiomycota/aislamiento & purificación , Ecosistema , Sedimentos Geológicos/microbiología , Golfo de México
11.
PLoS One ; 14(5): e0216982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31095623

RESUMEN

White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase.


Asunto(s)
Octopodiformes/fisiología , Reproducción/fisiología , Transducción de Señal , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas Argonautas/fisiología , Diferenciación Celular , ARN Helicasas DEAD-box/fisiología , Estradiol Deshidrogenasas/fisiología , Femenino , Perfilación de la Expresión Génica , Hidrocortisona/fisiología , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/fisiología , Octopodiformes/genética , Filogenia , Receptores de Hormona Liberadora de Corticotropina/fisiología , Receptores de Estrógenos/fisiología , Factores Sexuales
12.
Biotechnol Genet Eng Rev ; 35(1): 69-91, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30221593

RESUMEN

The increased global demand for food production has motivated agroindustries to increase their own levels of production. Scientific efforts have contributed to improving these production systems, aiding to solve problems and establishing novel conceptual views and sustainable alternatives to cope with the increasing demand. Although microorganisms are key players in biological systems and may drive certain desired responses toward food production, little is known about the microbial communities that constitute the microbiomes associated with agricultural and veterinary activities. Understanding the diversity, structure and in situ interactions of microbes, together with how these interactions occur within microbial communities and with respect to their environments (including hosts), constitutes a major challenge with an enormous relevance for agriculture and biotechnology. The emergence of high-throughput sequencing technologies, together with novel and more accessible bioinformatics tools, has allowed researchers to learn more about the functional potential and functional activity of these microbial communities. These tools constitute a relevant approach for understanding the metabolic processes that can occur or are currently occurring in a given system and for implementing novel strategies focused on solving production problems or improving sustainability. Several 'omics' sciences and their applications in agriculture are discussed in this review, and the usage of functional metagenomics is proposed to achieve substantial advances for food agroindustries and veterinary sciences.


Asunto(s)
Microbiología de Alimentos , Metagenómica/métodos , Plantas/microbiología , Animales , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Abastecimiento de Alimentos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética
13.
Genome Announc ; 6(10)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29519836

RESUMEN

We report here the genome sequence of Labrenzia sp. EL143, an alphaproteobacterium isolated from the gorgonian coral Eunicella labiata that possesses various genes involved in halogen and aromatic compound degradation, as well as polyketide synthesis. The strain also maintains multiple genes that confer resistance to toxic compounds such as heavy metals and antibiotics.

14.
Genome Announc ; 6(9)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29496842

RESUMEN

Here, we report the draft genome sequence of Sphingorhabdus sp. strain EL138, an alphaproteobacterium that shows potential to degrade polycyclic aromatic compounds and to cope with various heavy metals and antibiotics. Moreover, the strain, isolated from the gorgonian coral Eunicella labiata, possesses several genes involved in the biosynthesis of polyphosphates, polyketides, and terpenoids.

15.
Front Physiol ; 9: 1920, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30697164

RESUMEN

Octopus maya endemic to the Yucatan Peninsula, Mexico, is an ectotherm organism particularly temperature-sensitive. Studies in O. maya females show that temperatures above 27°C reduce the number of eggs per spawn, fertilization rate and the viability of embryos. High temperatures also reduce the male reproductive performance and success. However, the molecular mechanisms are still unknown. The transcriptomic profiles of testes from thermally stressed (30°C) and not stressed (24°C) adult male octopuses were compared, before and after mating to understand the molecular bases involved in the low reproductive performance at high temperature. The testis paired-end cDNA libraries were sequenced using the Illumina MiSeq platform. Then, the transcriptome was assembled de novo using Trinity software. A total of 53,214,611 high-quality paired reads were used to reconstruct 85,249 transcripts and 77,661 unigenes with an N50 of 889 bp length. Later, 13,154 transcripts were annotated implementing Blastx searches in the UniProt database. Differential expression analysis revealed 1,881 transcripts with significant difference among treatments. Functional annotation and pathway mapping of differential expressed transcripts revealed significant enrichment for biological processes involved in spermatogenesis, gamete generation, germ cell development, spermatid development and differentiation, response to stress, inflammatory response and apoptosis. Remarkably, the transcripts encoding genes such as ZMYND15, KLHL10, TDRD1, TSSK2 and DNAJB13, which are linked to male infertility in other species, were differentially expressed among the treatments. The expression levels of these key genes, involved in sperm motility and spermatogenesis were validated by quantitative real-time PCR. The results suggest that the reduction in male fertility at high temperature can be related to alterations in spermatozoa development and motility.

16.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069352

RESUMEN

Microbial communities inhabiting gorgonian corals are believed to benefit their hosts through nutrient provision and chemical defence; yet much remains to be learned about their phylogenetic uniqueness and cultivability. Here, we determined the prokaryotic community structure and distinctiveness in the gorgonian Eunicella labiata by Illumina sequencing of 16S rRNA genes from gorgonian and seawater metagenomic DNA. Furthermore, we used a 'plate-wash' methodology to compare the phylogenetic diversity of the 'total' gorgonian bacteriome and its 'cultivatable' fraction. With 1016 operational taxonomic units (OTUs), prokaryotic richness was higher in seawater than in E. labiata where 603 OTUs were detected, 68 of which were host-specific. Oceanospirillales and Rhodobacterales predominated in the E. labiata communities. One Oceanospirillales OTU, classified as Endozoicomonas, was particularly dominant, and closest relatives comprised exclusively uncultured clones from other gorgonians. We cultivated a remarkable 62% of the bacterial symbionts inhabiting E. labiata: Ruegeria, Sphingorhabdus, Labrenzia, other unclassified Rhodobacteraceae, Vibrio and Shewanella ranked among the 10 most abundant genera in both the cultivation-independent and dependent samples. In conclusion, the E. labiata microbiome is diverse, distinct from seawater and enriched in (gorgonian)-specific bacterial phylotypes. In contrast to current understanding, many dominant E. labiata symbionts can, indeed, be cultivated.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Microbiota , Animales , Bacterias/genética , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
18.
J Microbiol ; 54(11): 774-781, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27796931

RESUMEN

The need for new antibiotics has sparked a search for the microbes that might potentially produce them. Current sequencing technologies allow us to explore the biotechnological potential of microbial communities in diverse environments without the need for cultivation, benefitting natural product discovery in diverse ways. A relatively recent method to search for the possible production of novel compounds includes studying the diverse genes belonging to polyketide synthase pathways (PKS), as these complex enzymes are an important source of novel therapeutics. In order to explore the biotechnological potential of the microbial community from the largest underground aquifer in the world located in the Yucatan, we used a polyphasic approach in which a simple, non-computationally intensive method was coupled with direct amplification of environmental DNA to assess the diversity and novelty of PKS type I ketosynthase (KS) domains. Our results suggest that the bioinformatic method proposed can indeed be used to assess the novelty of KS enzymes; nevertheless, this in silico study did not identify some of the KS diversity due to primer bias and stringency criteria outlined by the metagenomics pipeline. Therefore, additionally implementing a method involving the direct cloning of KS domains enhanced our results. Compared to other freshwater environments, the aquifer was characterized by considerably less diversity in relation to known ketosynthase domains; however, the metagenome included a family of KS type I domains phylogenetically related, but not identical, to those found in the curamycin pathway, as well as an outstanding number of thiolases. Over all, this first look into the microbial community found in this large Yucatan aquifer and other fresh water free living microbial communities highlights the potential of these previously overlooked environments as a source of novel natural products.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Agua Subterránea , Metagenómica , Consorcios Microbianos/genética , Sintasas Poliquetidas/genética , Productos Biológicos/química , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Agua Dulce/microbiología , Variación Genética , Agua Subterránea/microbiología , Metagenoma , Filogenia , Metabolismo Secundario/genética
19.
Genome Announc ; 4(4)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540075

RESUMEN

To address the metabolic potential of symbiotic Aquimarina spp., we report here the genome sequence of Aquimarina sp. strain EL33, a bacterium isolated from the gorgonian coral Eunicella labiata This first-described (to our knowledge) animal-associated Aquimarina genome possesses a sophisticated repertoire of genes involved in drug/antibiotic resistance and biosynthesis.

20.
Mar Genomics ; 23: 45-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25957695

RESUMEN

Euphausia superba is a keystone species in Antarctic food webs. However, the continued decrease in stock density raises concerns over the resilience and adaptive potential of krill to withstand the current rate of environmental change. We undertook a transcriptome-scale approach (454 pyrosequencing) as a baseline for future studies addressing the physiological response of krill to short-term food shortage and natural UV-B stress. The final assembly resulted in a total of 26,415 contigs, 39.8% of which were putatively annotated. Exploratory analyses indicate an overall reduction in protein synthesis under food shortage while UV stress resulted in the activation of photo-protective mechanisms.


Asunto(s)
Euphausiacea/genética , Regulación de la Expresión Génica/fisiología , Estrés Fisiológico/fisiología , Transcriptoma , Animales , Mapeo Contig , Privación de Alimentos , Estrés Fisiológico/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA