Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 234: 123523, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796570

RESUMEN

There is a dire need to find an efficient, cost-effective, sustainable, and environment-friendly adsorbent for the removal of anionic pollutants such as dyes from waste effluent. In this work, a cellulose-based cationic adsorbent was designed and utilized for methyl orange and reactive black 5 anionic dyes adsorption from an aqueous medium. Solid-state nuclear magnetic resonance spectroscopy (NMR) revealed the successful modification of cellulose fibers, and dynamic light scattering (DLS) evaluations showed the levels of charge densities. Furthermore, various models for adsorption equilibrium isotherm were utilized to understand the adsorbent characteristics, with the Freundlich isotherm model providing an excellent fit for the experimental results. The modelled maximum adsorption capacity was as much as 1010 mg/g for both model dyes. The dye adsorption was also confirmed using EDX. It was noted that the dyes were chemically adsorbed through the ionic interaction that can be reversed using sodium chloride solution. Overall, the cationized cellulose is inexpensive, environment-friendly, nature-driven, and recyclable making it an appealing adsorbent feasible for the dye removal from textile wastewater effluent.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Celulosa/química , Contaminantes Químicos del Agua/química , Aguas Residuales , Cationes/química , Adsorción , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA