Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958682

RESUMEN

Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were collected monthly from September to December and were assessed for cold tolerance via membrane leakage and chlorophyll fluorescence changes at -5, -15, -25, -35, and -45 °C. Lipids were extracted and analyzed using mass spectrometry while postharvest needle abscission was determined gravimetrically. Cold tolerance and needle retention each significantly (p < 0.001) improved throughout autumn in balsam fir. There were concurrent increases in DGDG, PC, PG, PE, and PA throughout autumn as well as a decrease in MGDG. Those same lipids were strongly related to cold tolerance, though MGDG had the strongest relationship (R2 = 55.0% and 42.7% from membrane injury and chlorophyll fluorescence, respectively). There was a similar, albeit weaker, relationship between MGDG:DGDG and needle retention (R2 = 24.3%). Generally, a decrease in MGDG:DGDG ratio resulted in better cold tolerance and higher needle retention in balsam fir, possibly due to increased membrane stability. This study confirms the degree of cold acclimation in Nova Scotian balsam fir and presents practical significance to industry by identifying the timing of peak needle retention. It is suggested that MGDG:DGDG might be a beneficial tool for screening balsam fir genotypes with higher needle retention characteristics.


Asunto(s)
Abies , Estaciones del Año , Hojas de la Planta , Lípidos , Clorofila , Aclimatación
2.
Front Plant Sci ; 6: 1069, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635863

RESUMEN

Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding.

3.
Photosynth Res ; 97(3): 205-14, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18668341

RESUMEN

The minimum fluorescence parameter (Falpha), generated using the new pulse frequency modulation (PFM) technology, was compared with the minimum fluorescence parameter (Fo), generated by pulse amplitude modulation (PAM), in response to a reversible low-oxygen stress in 'Honeycrisp'trade mark (HC) apples (Malus domestica) and an irreversible osmotic stress induced by water loss in two grape (Vitis spp.) cultivars ('L'Acadie' (LAc) and 'Thompson Seedless' (TS)). The minimum fluorescence values produced by both fluorometer types in response to a reversible low-oxygen stress in apples were indistinguishable: both Fo and Falpha increased when O2 levels were lowered below the anaerobic compensation point (ACP); when gas levels returned to normoxia both parameters dipped below, then returned to, the original fluorescence baseline. The two parameters also responded similarly to the irreversible osmotic stress in grapes: in both cultivars, Falpha and Fo first decreased before reaching an inflection point at approximately 20% mass loss and then increased towards a second inflection point. However, the two parameters were not analogous under the irreversible osmotic stress; most notably, the relative Falpha values appeared to be lower than Fo during the later stages of dehydration. This was likely due to the influence of the Fm parameter and an overestimation of Falpha when measuring the fluorescence from healthy and responsive chloroplasts as found in grapes experiencing minimal water loss, but not in grapes undergoing moderate to severe dehydration. An examination of the data during a typical PFM scan reveals this fluorometer system may yield new fluorescence information with interesting biological applications.


Asunto(s)
Clorofila/metabolismo , Fotosíntesis/fisiología , Clorofila/química , Fluorometría/instrumentación , Fluorometría/métodos , Malus/metabolismo , Especificidad de la Especie , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA