Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 80(1): 013103, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19191425

RESUMEN

We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with (88)Sr(+) ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

2.
Phys Rev Lett ; 96(1): 017205, 2006 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-16486511

RESUMEN

We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.

3.
Nano Lett ; 5(9): 1685-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16159205

RESUMEN

We present gate-dependent transport measurements of Kondo impurities in bare gold break junctions, generated with high yield using an electromigration process that is actively controlled. Thirty percent of measured devices show zero-bias conductance peaks. Temperature dependence suggests Kondo temperatures approximately 7 K. The peak splitting in magnetic field is consistent with theoretical predictions for g = 2, though in many devices the splitting is offset from 2g mu(B)B by a fixed energy. The Kondo resonances observed here may be due to atomic-scale metallic grains formed during electromigration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA