Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Front Immunol ; 15: 1436437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301028

RESUMEN

Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.


Asunto(s)
Interleucina-33 , Humanos , Interleucina-33/metabolismo , Interleucina-33/inmunología , Animales , Inflamación/inmunología , Inmunidad Innata , Células Th2/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Asma/inmunología
2.
ACS Omega ; 9(36): 37505-37529, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39281944

RESUMEN

Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.

3.
J Neurosci Methods ; 411: 110267, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39191303

RESUMEN

BACKGROUND: This study investigates the potential of transcranial magnetic stimulation (TMS) to enhance spinal cord axon regeneration by modulating corticospinal pathways and improving motor nerve function recovery in rats with spinal cord injury (SCI). NEW METHOD: TMS is a non-invasive neuromodulation technique that generates a magnetic field to activate neurons in the brain, leading to depolarization and modulation of cortical activity. Initially utilized for brain physiology research, TMS has evolved into a diagnostic and prognostic tool in clinical settings, with increasing interest in its therapeutic applications. However, its potential for treating motor dysfunction in SCI has been underexplored. RESULTS: The TMS intervention group exhibited significant improvements compared to the control group across behavioral assessments, neurophysiological measurements, pathological analysis, and immunological markers. COMPARISON WITH EXISTING METHODS: Unlike most studies that focus on localized spinal cord injury or muscle treatments, this study leverages the non-invasive, painless, and highly penetrating nature of TMS to focus on the corticospinal tracts, exploring its therapeutic potential for SCI. CONCLUSIONS: TMS enhances motor function recovery in rats with SCI by restoring corticospinal pathway integrity and promoting axonal regeneration. These findings highlight TMS as a promising therapeutic option for SCI patients with currently limited treatment alternatives.


Asunto(s)
Regeneración Nerviosa , Tractos Piramidales , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Estimulación Magnética Transcraneal/métodos , Tractos Piramidales/fisiopatología , Tractos Piramidales/fisiología , Femenino , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Modelos Animales de Enfermedad , Axones/fisiología , Ratas , Potenciales Evocados Motores/fisiología
4.
Sci Total Environ ; 951: 175775, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197790

RESUMEN

Organics and divalent cations are the primary barriers constraining the performance of membrane technology, while the interactions between them and the detailed mechanisms of their impacts are still lacking in-depth analysis. In this study, sodium alginate and xanthan gum were selected as polysaccharides models, and the formation of transparent extracellular polymer particles (TEP) was assessed to examine the effect of Ca2+ and polysaccharides type on membrane fouling from both qualitative and quantitative perspectives. The results revealed that higher Ca2+ concentrations led to a greater abundance of TEP, and the transformation of TEP microstructure is a key factor for the membrane fouling change indicated by specific filtration resistance (SFR). TEP formed by sodium alginate underwent a transformation from amorphous-TEP (a-TEP) form to particle-TEP (p-TEP), corresponding to a unimodal pattern of SFR variation. With increasing Ca2+ concentration, the molecular interactions of xanthan gum became stronger, resulting in larger fibrous a-TEP and a continuous SFR increase. According to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, TEP formed by xanthan gum exhibited higher adhesion energy, thus causing more severe membrane fouling. The SFR variation of the TEP system can be satisfactorily explained by the conception of chemical potential change in the filtration process depicted in Flory-Huggins theory. This study is the first work to introduce models regarding chemical potential and TEP microstructure, linking the system chemical potential and TEP microstructure with membrane fouling indicated by SFR. As all, this study provided a new perspective for analyzing the polysaccharide fouling behavior via TEP determination and further enhanced the understanding through thermodynamic analysis.

5.
Front Endocrinol (Lausanne) ; 15: 1419913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104813

RESUMEN

Like the ovaries and prostate, the thyroid exhibits characteristic hormone secretion and regulation. Thyroid cancer (TC), especially differentiated thyroid carcinoma, has typical sex-specific and age-specific hormone-driven clinical features. Previous research has primarily focused on the effects of thyroid stimulating hormone, thyroid hormones, and estrogens on the onset and progression of TC, while the roles of growth hormone (GH), androgens, and glucocorticoids have largely been overlooked. Similarly, few studies have investigated the interactions between hormones and hormone systems. In fact, numerous studies of patients with acromegaly have shown that serum levels of GH and insulin-like growth factor-1 (IGF-1) may be associated with the onset and progression of TC, although the influences of age, sex, and other risk factors, such as obesity and stress, remain unclear. Sex hormones, the GH/IGF axis, and glucocorticoids are likely involved in the onset and progression of TC by regulating the tumor microenvironment and metabolism. The aim of this review was to clarify the roles of hormones and hormone systems in TC, especially papillary thyroid carcinoma, as references for further investigations.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Glándula Tiroides , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Sistema Hipotálamo-Hipofisario/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo
6.
Bioorg Med Chem ; 111: 117844, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106652

RESUMEN

Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12-39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.


Asunto(s)
Amidas , Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Naftalenos/farmacología , Naftalenos/síntesis química , Naftalenos/química , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular
7.
Mol Ther Nucleic Acids ; 35(2): 102225, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38948332

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy targeting T cell tumors still faces many challenges, one of which is its fratricide due to the target gene expressed on CAR-T cells. Despite this, these CAR-T cells can be expanded in vitro by extending the culture time and effectively eliminating malignant T cells. However, the mechanisms underlying CAR-T cell survival in cell subpopulations, the molecules involved, and their regulation are still unknown. We performed single-cell transcriptome profiling to investigate the fratricidal CAR-T products (CD26 CAR-Ts and CD44v6 CAR-Ts) targeting T cells, taking CD19 CAR-Ts targeting B cells from the same donor as a control. Compared with CD19 CAR-Ts, fratricidal CAR-T cells exhibit no unique cell subpopulation, but have more exhausted T cells, fewer cytotoxic T cells, and more T cell receptor (TCR) clonal amplification. Furthermore, we observed that fratricidal CAR-T cell survival was accompanied by target gene expression. Gene expression results suggest that fratricidal CAR-T cells may downregulate their human leukocyte antigen (HLA) molecules to evade T cell recognition. Single-cell regulatory network analysis and suppression experiments revealed that exhaustion mediated by critical regulatory factors may contribute to fratricidal CAR-T cell survival. Together, these data provide valuable and first-time insights into the survival of fratricidal CAR-T cells.

8.
Chin Med J (Engl) ; 137(17): 2052-2064, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39075637

RESUMEN

ABSTRACT: Tumor bioinformatics plays an important role in cancer research and precision medicine. The primary focus of traditional cancer research has been molecular and clinical studies of a number of fundamental pathways and genes. In recent years, driven by breakthroughs in high-throughput technologies, large-scale cancer omics data have accumulated rapidly. How to effectively utilize and share these data is particularly important. To address this crucial task, many computational tools and databases have been developed over the past few years. To help researchers quickly learn and understand the functions of these tools, in this review, we summarize publicly available bioinformatics tools and resources for pan-cancer multi-omics analysis, regulatory analysis of tumorigenesis, tumor treatment and prognosis, immune infiltration analysis, immune repertoire analysis, cancer driver gene and driver mutation analysis, and cancer single-cell analysis, which may further help researchers find more suitable tools for their research.


Asunto(s)
Biología Computacional , Neoplasias , Humanos , Biología Computacional/métodos , Neoplasias/genética , Mutación
9.
Turk J Med Sci ; 54(2): 459-470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050397

RESUMEN

Background/aim: Urethroplasty is the preferred treatment for hypospadias but is affected by the severity of anomalies, making it a complex procedure with potential postoperative complications. Following surgery, parents receive instructions and recommendations, whether from nurses or physicians, regardless of complication rates. However, nurses play a crucial role in educating caregivers before surgery and providing postoperative care during follow-up. The study aims to assess parents' knowledge and practices, as well as the frequency of complications in boys who underwent urethroplasty for hypospadias and received postoperative nurse-led care and whose parents received preoperative education against those of boys who underwent urethroplasty under routine hospital care. Materials and methods: In this retrospective study, Han Chinese boys aged 21-41 months in Western China who underwent urethroplasty for hypospadias were divided into two groups: the NI cohort (n = 103), where they received postoperative nurse-led care and their parents received preoperative education, and the RH cohort (n = 142), where boys underwent routine hospital care. Results: After urethroplasty, higher numbers of caregivers with satisfactory knowledge (96 (93%) vs. 80 (56%), p < 0.0001) and practice (102 (99%) vs. 132 (93%), p = 0.0276) were reported in the NI cohort compared to the RH cohort. Additionally, a higher number of boys in the RH cohort experienced adverse effects such as moderate bleeding (13 (9%) vs. 1 (1%), p = 0.0052), wound infection (17 (12%) vs. 4 (4%), p = 0.0356), urinary obstruction (35 (25%) vs. 10 (10%), p = 0.0049), burning sensation (47 (33%) vs. 15 (15%), p = 0.0019), and urinary stent fall (32 (23%) vs. 6 (6%), p = 0.0008) compared to those in the NI cohort. Conclusion: Preoperative instructions enhance caregivers' knowledge and practices following urethroplasty, while postoperative nurse-led care reduces immediate postoperative complications associated with hypospadias in boys.


Asunto(s)
Hipospadias , Padres , Humanos , Masculino , Hipospadias/cirugía , Estudios Retrospectivos , China , Lactante , Preescolar , Complicaciones Posoperatorias/epidemiología , Uretra/cirugía , Cuidados Posoperatorios/enfermería , Cuidados Posoperatorios/métodos , Conocimientos, Actitudes y Práctica en Salud
10.
Acta Pharmacol Sin ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914677

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 µg/g body weight) in 100 µL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 µg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.

11.
Cell Death Discov ; 10(1): 287, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879568

RESUMEN

Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.

12.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777611

RESUMEN

Homeostatic plasticity stabilizes firing rates of neurons, but the pressure to restore low activity rates can significantly alter synaptic and cellular properties. Most previous studies of homeostatic readjustment to complete activity silencing in rodent forebrain have examined changes after 2 d of deprivation, but it is known that longer periods of deprivation can produce adverse effects. To better understand the mechanisms underlying these effects and to address how presynaptic as well as postsynaptic compartments change during homeostatic plasticity, we subjected mouse cortical slice cultures to a more severe 5 d deprivation paradigm. We developed and validated a computational framework to measure the number and morphology of presynaptic and postsynaptic compartments from super-resolution light microscopy images of dense cortical tissue. Using these tools, combined with electrophysiological miniature excitatory postsynaptic current measurements, and synaptic imaging at the electron microscopy level, we assessed the functional and morphological results of prolonged deprivation. Excitatory synapses were strengthened both presynaptically and postsynaptically. Surprisingly, we also observed a decrement in the density of excitatory synapses, both as measured from colocalized staining of pre- and postsynaptic proteins in tissue and from the number of dendritic spines. Overall, our results suggest that cortical networks deprived of activity progressively move toward a smaller population of stronger synapses.


Asunto(s)
Potenciales Postsinápticos Excitadores , Neocórtex , Plasticidad Neuronal , Sinapsis , Animales , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Neocórtex/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Ratones Endogámicos C57BL , Privación Sensorial/fisiología , Masculino , Ratones , Femenino , Espinas Dendríticas/fisiología
13.
Front Cardiovasc Med ; 11: 1347552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628317

RESUMEN

Background: The cardioprotective effect of remote ischemia preconditioning in clinical studies is inconsistent with experimental results. Adaptation to high-altitude hypoxia has been reported to be cardioprotective in animal experiments. However, the clinical significance of the cardioprotective effect of high-altitude adaptation has not been demonstrated. Methods: A retrospective cohort study with propensity score matching was designed to compare the outcomes of cardiac surgery between highlanders and lowlanders in a tertiary teaching hospital. The data of adult cardiac surgical patients from January 2013 to December 2022, were collected for analysis. Patients with cardiopulmonary bypass and cardioplegia were divided into a low-altitude group (<1,500 m) and a high-altitude group (≥1,500 m) based on the altitude of their place of residence. Results: Of 3,020 patients, the majority (87.5%) permanently lived in low-altitude regions [495 (435, 688) m], and there were 379 patients (12.5%) in the high-altitude group [2,552 (1,862, 3,478) m]. The 377 highlander patients were matched with lowlander patients at a ratio of 1:1. The high-altitude group exhibited a 44.5% reduction in the incidence of major adverse cardiovascular events (MACEs) compared with the low-altitude group (6.6% vs. 11.9%, P = 0.017). The patients in the moderate high-altitude subgroup (2,500-3,500 m) had the lowest incidence (5.6%) of MACEs among the subgroups. The level of creatinine kinase muscle-brain isoenzymes on the first postoperative morning was lower in the high-altitude group than in the low-altitude group (66.5 [47.9, 89.0] U/L vs. 69.5 [49.3, 96.8] U/L, P = 0.003). Conclusions: High-altitude adaptation exhibits clinically significant cardioprotection in cardiac surgical patients.

14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 33-38, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38433628

RESUMEN

Objective To visualize the research status and hotspots of women's common disease screening based on CiteSpace 6.1.R6,and to provide a reference for the in-depth research in this field thereafter. Methods The relevant articles were retrieved from the China National Knowledge Infrastructure with the time interval from January 1,1992 to December 13,2022.The analysis was conducted on the number of annual publications,countries(regions),institutions,author collaboration networks,keyword co-occurrence,clustering,and bursts. Results A total of 900 papers that met the criteria were included,and the number of annual publications showed a trend of first increasing and then decreasing.The cross-institutional collaboration network was mature.The research hotspots mainly covered women's health,the prevalence of women's diseases,reproductive health,and breast diseases.The hotspots have evolved from an initial focus on reproductive health care to gynecological disease management,and eventually to reproductive health and holistic health care in women. Conclusions The attention should be kept on the screening of women's common diseases.It is advisable to synchronize the screening of women's common diseases with the screening of cervical and breast cancers to expand the screening coverage,promote early disease detection and treatment,and comprehensively safeguard women's health.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , China/epidemiología , Cuello
15.
Anal Chem ; 96(8): 3525-3534, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345335

RESUMEN

Anaplastic lymphoma kinase (ALK) rearrangements have been identified as key oncogenic drivers of a subset of nonsmall cell lung cancer (NSCLC). The final chimeric protein of the fusion gene can be constitutively activated, which accounts for the growth and proliferation of ALK-rearranged tumors and thus strongly associates with cancer invasion and metastasis. Diagnostic tools enabling the visualization of ALK activity in a structure-function-based approach are highly desirable to determine ALK status and guide ALK tyrosine kinase inhibitor (ALK-TKI) treatment making. Here, we describe the design, synthesis, and application of a new environment-sensitive fluorescent probe HX16 by introducing an environment-sensitive fluorophore 4-sulfonamidebenzoxadiazole to visualize ALK activity in living cancer cells and tumor tissue slices (mouse model and human biopsy sample). HX16 is a multifunctional chemical tool based on the pharmacophore of ALK-TKI (ceritinib) and can specifically target the kinase domain of ALK with a high sensitivity. Using flow cytometry and confocal microscopy, HX16 enables visualization of ALK activity in various cancer cells with distinct ALK fusion genes, as well as xenograft mouse models. Importantly, HX16 was also applied to visualize ALK activity in a tumor biopsy from a NSCLC patient with ALK-echinoderm microtubule-associated protein-like-4 fusion gene for prediction of ALK-TKI sensitivity. These results demonstrate that strategically designed ALK-TKI-based probe allows the assessment of ALK activity in tumor tissues and hold promise as a useful diagnostic tool in predicting ALK-TKI therapy response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa de Linfoma Anaplásico/genética , Colorantes Fluorescentes , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinasas , Inhibidores de Proteínas Quinasas/farmacología
16.
ACS Nano ; 18(9): 7046-7063, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381372

RESUMEN

Type 2 alveolar epithelial cell (AEC2) senescence is crucial to the pathogenesis of pulmonary fibrosis (PF). The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme cluster of differentiation 38 (CD38) is a marker of senescent cells and is highly expressed in AEC2s of patients with PF, thus rendering it a potential treatment target. Umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) have emerged as a cell-free treatment with clinical application prospects in antiaging and antifibrosis treatments. Herein, we constructed CD38 antigen receptor membrane-modified MSC-EVs (CD38-ARM-MSC-EVs) by transfecting MSCs with a lentivirus loaded with a CD38 antigen receptor-CD8 transmembrane fragment fusion plasmid to target AEC2s and alleviate PF. Compared with MSC-EVs, the CD38-ARM-MSC-EVs engineered in this study showed a higher expression of the CD38 antigen receptor and antifibrotic miRNAs and targeted senescent AEC2s cells highly expressing CD38 in vitro and in naturally aged mouse models after intraperitoneal administration. CD38-ARM-MSC-EVs effectively restored the NAD+ levels, reversed the epithelial-mesenchymal transition phenotype, and rejuvenated senescent A549 cells in vitro, thereby mitigating multiple age-associated phenotypes and alleviating PF in aged mice. Thus, this study provides a technology to engineer MSC-EVs and support our CD38-ARM-MSC-EVs to be developed as promising agents with high clinical potential against PF.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/terapia , Fibrosis Pulmonar/metabolismo , Células Epiteliales Alveolares , NAD/metabolismo , Vesículas Extracelulares/metabolismo , Receptores de Antígenos/metabolismo
17.
Water Environ Res ; 96(2): e10983, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291820

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nanofiltration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water; however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4-10), salinity (0- to 1000-mM NaCl), and organic matters (0-10 mM). We further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213-499 g·mol-1 ), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. Our results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. PRACTITIONER POINTS: Two commercial RO and NF membranes were both evaluated to remove 10 different PFAS. High transmembrane pressures facilitated permeate recovery and PFAS rejection by RO. Electrostatic repulsion and pore size exclusion are dominant rejection mechanisms for PFAS removal. pH, ionic strength, and organic matters affected PFAS rejection. Mechanisms of PFAS rejection with RO/NF membranes were explained by PCA analysis.


Asunto(s)
Fluorocarburos , Purificación del Agua , Agua , Ecosistema , Purificación del Agua/métodos , Ósmosis , Membranas Artificiales , Filtración/métodos
18.
Eur J Med Chem ; 265: 116115, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38199166

RESUMEN

Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.


Asunto(s)
Neoplasias , Quinasas Tipo Polo , Humanos , Ciclo Celular , Mitosis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Quinasas Tipo Polo/antagonistas & inhibidores , Quinasas Tipo Polo/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/efectos de los fármacos
19.
Br J Anaesth ; 132(1): 45-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007377

RESUMEN

BACKGROUND: Preliminary clinical trials of adamgammadex, a new cyclodextrin-based selective reversal agent, have demonstrated its efficacy in reversing neuromuscular block by rocuronium. METHODS: This multicentre, randomised, double-blind, positive-controlled, non-inferiority phase III clinical trial compared the efficacy and safety of adamgammadex and sugammadex. We randomised 310 subjects to receive adamgammadex (4 mg kg-1) or sugammadex (2 mg kg-1) at reappearance of the second twitch of the train-of-four (TOF), and standard safety data were collected. RESULTS: For the primary outcome, the proportion of patients with TOF ratio ≥0.9 within 5 min was 98.7% in the adamgammadex group vs 100% in the sugammadex group, with a point estimate and 95% confidence interval (CI) of 1.3% (-4.6%, +1.3%); the lower limit was greater than the non-inferiority margin of -10%. For the key secondary outcome, the median (inter quartile range) time from the start of administration of adamgammadex or sugammadex to recovery of TOF ratio to 0.9 was 2.25 (1.75, 2.75) min and 1.75 (1.50, 2.00) min, respectively. The difference was 0.50 (95% CI: 0.25, 0.50); the upper limit was lower than the non-inferiority margin of 5 min. In addition, there were no inferior results observed in secondary outcomes. Adamgammadex had a lower incidence of adverse drug reactions compared with sugammadex (anaphylactic reaction, recurarisation, decreased heart rate, and laryngospasm; P=0.047). CONCLUSIONS: Adamgammadex was non-inferior to sugammadex with a possible lower incidence of adverse drug reactions compared with sugammadex. Adamgammadex may have a potential advantage in terms of its overall risk-benefit profile. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2000039525. Registered October 30, 2020. https://www.chictr.org.cn/showproj.html?proj=56825.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Bloqueo Neuromuscular , Fármacos Neuromusculares no Despolarizantes , gamma-Ciclodextrinas , Humanos , Sugammadex/efectos adversos , Rocuronio , Bloqueo Neuromuscular/métodos , gamma-Ciclodextrinas/efectos adversos , Fármacos Neuromusculares no Despolarizantes/efectos adversos , Androstanoles/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología
20.
Transl Neurosci ; 14(1): 20220320, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37954153

RESUMEN

Spinal cord injury (SCI) is a serious disabling injury, and the main factors causing SCI in patients include car accidents, falls from heights, as well as heavy blows and falls. These factors can all cause spinal cord compression or even complete rupture. After SCI, problems with the movement, balance, and walking ability of the lower limbs are most common, and SCI can cause abnormalities in patient's movement, sensation, and other aspects. Therefore, in the treatment of SCI, it is necessary to strengthen the rehabilitation training (RT) of patients based on data science to improve their motor ability and play a positive role in the recovery of their walking ability. This article used lower limb rehabilitation robot (LLRR) to improve the walking ability of SCI patients and applied them to SCI rehabilitation. The purpose is to improve the limb movement function of patients by imitating and assisting their limb movements, thereby achieving pain relief and muscle strength enhancement and promoting rehabilitation. The experimental results showed that the functional ambulation category (FAC) scale scores of Group A and Group B were 0.79 and 0.81, respectively, in the first 10 weeks of the experiment. After 10 weeks of the experiment, the FAC scores of Group A and Group B were 2.42 and 4.36, respectively. After the experiment, the FAC score of Group B was much higher than that of Group A, indicating that Group B was more effective in improving patients' walking ability compared to Group A. This also indicated that LLRR rehabilitation training can enhance the walking ability of SCI patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA