Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37049230

RESUMEN

This research analyses the viability of using cryogenic cooling combined with MQL (minimum quantity lubrication) lubrication, under CryoMQL technology, as a cutting fluid in the industrial environment to justify the increase in the environmental footprint generated by its use compared to MQL in stand-alone mode. For this analysis, a set of milling tests were carried out on carbon steel AISI 1045, which is one of the most commonly used materials in the business day-to-day. In this set of tests, the evolution of cutting edge wear and energy consumption of both technologies were recorded to check their tool life through technological and environmental analysis. Thus, we sought to discern whether the energy savings derived from the machining process make up for the greater environmental footprint initially generated by the use of CryoMQL technology itself. The results obtained show how the use of CryoMQL not only increased tool life, but also allowed an increase in productivity by increasing cutting speeds by 18%; in other words, thanks to this technology, a more technologically advanced and environmentally friendly process is obtained. By increasing tool life by 30%, a reduction in energy consumption is achieved together with cost savings, which implies that ECO2 machining has economic and ecological benefits.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36558247

RESUMEN

Nickel-based superalloys find their main use in missile engines, atomic devices, investigational aircraft, aerospace engineering, industrial applications, and automotive gas turbines, spacecraft petrochemical tools, steam power, submarines, and broader heating applications. These superalloys impose certain difficulties during the process fabrication owing to their levels of higher hardness. In the current study, the precise machining of Waspaloy was attempted through the wire electrical discharge machining (WEDM) technique. A multi-objective optimization has been performed, and the influence of multi-walled carbon nanotubes (MWCNTs) has been assessed using the passing vehicle search (PVS) algorithm. The effects of machining variables like current, Toff, and Ton were studied using the output measures of material removal rate (MRR), recast layer thickness (RLT), and surface roughness (SR). The Box-Behnken design was applied to generate the experimental matrix. Empirical models were generated which show the interrelationship among the process variables and output measures. The analysis of variance (ANOVA) method was used to check the adequacy, and suitability of the models and to understand the significance of the parameters. The PVS technique was executed for the optimization of MRR, SR, and RLT. Pareto fronts were derived which gives a choice to the user to select any point on the front as per the requirement. To enhance the machining performance, MWCNTs mixed dielectric fluid was utilized, and the effect of these MWCNTs was also analyzed on the surface defects. The use of MWCNTs at 1 g/L enhanced the performance of MRR, SR, and RLT by 65.70%, 50.68%, and 40.96%, respectively. Also, the addition of MWCNTs has shown that the machined surface largely reduces the surface defects.

3.
Materials (Basel) ; 15(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35329482

RESUMEN

In the present work, the surface integrity and flank wear of uncoated cermet inserts in dry turning of AISI 1045 steel were evaluated. Three-dimensional techniques were used to assess the surface roughness. Previously, finite element analysis was carried out to predict the cutting forces and heat distribution in the chip formation region. Cutting speed and feed were the parameters varied in the experiments. Feed is decisive in the final quality of the turned surface and cutting speed had little influence on this aspect. The surface was significantly damaged with the progression of the insert flank wear. Considering an average flank wear VBB of 0.1 mm, a tool life of 35 min was achieved using a cutting speed of 175 m/min, and of 23 min for a cutting speed of 275 m/min. Abrasive wear was predominant during the experiments. No microstructure defects were observed, as well as crack propagation or accentuated deformations near the machined surface region. Therefore, the dry turning of 1045 steel with cermet inserts route has proven extremely viable from the standpoints of tool life, surface integrity, chip formation, and sustainability.

4.
Materials (Basel) ; 13(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575911

RESUMEN

Machining parameters affects the final quality of components made in carbon fiber reinforced plastic (CFRP) composite materials. In this framework, the work here presented aims at studying the right combination of cutting speed (vc) and feed rate (vf), for dry drilling of carbon fiber reinforced plastic composite materials, which obtained better results regarding roughness, hole cylindricity, and diameter. A series of experimental tests were carried out under different drilling conditions (vc/vf), monitoring the thrust force (Fz), torque (T), and electric power (EP), to define which one can help more for industrial daily life production. Results validation was carried out using the analysis of variance, in order to relate main machining parameters cutting speed and linear feed, with thrust force, drilling torque, main spindle electric power and hole quality parameters (average roughness, cylindricity and diameter). The conclusions show that thrust force is not proportional to the cutting speed and the best combinations of cutting speed and feed were found out around the average values of tested parameters. Spindle electric power is an interesting element to take into account because it is easy to consider in real production.

5.
Materials (Basel) ; 13(6)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235746

RESUMEN

Prediction and control of machining distortion is a primary concern when manufacturing monolithic components due to the high scrap and rework costs involved. Bulk residual stresses, which vary from blank to blank, are a major factor of machining distortion. Thus, a bulk stress characterization is essential to reduce manufacturing costs linked to machining distortion. This paper proposes a method for bulk stress characterization on aluminium machining blanks, suitable for industrial application given its low requirements on equipment, labour expertise, and computation time. The method couples the effects of bulk residual stresses, machining stresses resulting from cutting loads on the surface and raw geometry of the blanks, and presents no size limitations. Experimental results confirm the capability of the proposed method to measure bulk residual stresses effectively and its practicality for industrial implementation.

6.
Materials (Basel) ; 12(12)2019 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-31234596

RESUMEN

Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, different approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by different authors from an industrial point of view. Finally, some further research lines are proposed.

7.
Materials (Basel) ; 11(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486294

RESUMEN

Gamma titanium aluminides (γ-TiAl) present an excellent behavior under high temperature conditions, being a feasible alternative to nickel-based superalloy components in the aeroengine sector. However, considered as a difficult to cut material, process cutting parameters require special study to guarantee component quality. In this work, a developed drilling mechanistic model is a useful tool in order to predict drilling force (Fz) and torque (Tc) for optimal drilling conditions. The model is a helping tool to select operational parameters for the material to cut by providing the programmer predicted drilling forces (Fz) and torque (Tc) values. This will allow the avoidance of operational parameters that will cause excessively high force and torque values that could damage quality. The model is validated for three types of Gamma-TiAl alloys. Integral hard metal end-drilling tools and different cutting parameters (feeds and cutting speeds) are tested for three different sized holes for each alloy.

8.
Materials (Basel) ; 11(8)2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30060496

RESUMEN

The emergence of multitasking machines in the machine tool sector presents new opportunities for the machining of large size gears and short production series in these machines. However, the possibility of using standard tools in conventional machines for gears machining represents a technological challenge from the point of view of workpiece quality. Machining conditions in order to achieve both dimensional and surface quality requirements need to be determined. With these considerations in mind, computer numerical control (CNC) methods to provide useful tools for gear processing are studied. Thus, a model for the prediction of surface roughness obtained on the teeth surface of a machined spiral bevel gear in a multiprocess machine is presented. Machining strategies and optimal machining parameters were studied, and the roughness model is validated for 3 + 2 axes and 5 continuous axes machining strategies.

9.
Eng Life Sci ; 17(4): 382-391, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32624783

RESUMEN

Biomachining has become a promising alternative to micromachining metal pieces, as it is considered more environmentally friendly than their physical and chemical machining counterparts. In this research work, two strategies that contribute to the development of this innovative technology and could promote its industrial implementation were investigated: preservation of biomachining microorganisms (Acidithiobacillus ferrooxidans) for their further use, and making valuable use of the liquid residue obtained following the biomachining process. Regarding the preservation method, freeze-drying, freezing, and drying were tested to preserve biomachining bacteria, and the effect of different cryoprotectants, storage times, and temperatures was studied. Freezing at -80°C in Eppendorf cryovials using betaine as a cryoprotective agent reported the highest bacteria survival rate (40% of cell recovery) among the studied processes. The treatment of the liquid residue in two successive stages led to the precipitation of most of the total dissolved iron and divalent copper (99.9%). The by-products obtained (iron and copper hydroxide) could be reused in several industrial applications, thereby enhancing the environmentally friendly nature of the biomachining process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA