Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 399: 111150, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025288

RESUMEN

Metal-organic framework (MOF) modified with iron oxide, Fe3O4-MOF, is a perspective drug delivery agent, enabling magnetic control and production of active hydroxyl radicals, •OH, via the Fenton reaction. This paper studies cytotoxic and radical activities of Fe-containing nanoparticles (NPs): Fe3O4-MOF and its components - bare Fe3O4 and MOF (MIL-88B). Luminous marine bacteria Photobacteriumphosphoreum were used as a model cellular system to monitor bioeffects of the NPs. Neither the NPs of Fe3O4-MOF nor MOF showed cytotoxic effects in a wide range of concentrations (<10 mg/L); while Fe3O4 was toxic at >3·10-3 mg/L. The NPs of Fe3O4 did not affect the bacterial bioluminescence enzymatic system; their toxic effect was attributed to cellular membrane processes. The integral content of reactive oxygen species (ROS) was determined using a chemiluminescence luminol assay. Bacteria mitigated excess of ROS in water suspensions of Fe3O4-MOF and MOF, maintaining bioluminescence intensity closer to the control; this resulted in low toxicity of these NPs. We estimated the activity of •OH radicals in the NPs samples with physical and chemical methods - spin capture technology (using electron paramagnetic resonance spectroscopy) and methylene blue degradation. Physico-chemical interpretation of cellular responses is provided in terms of iron content, iron ions release and •OH radical production.


Asunto(s)
Compuestos Férricos , Radical Hidroxilo , Estructuras Metalorgánicas , Photobacterium , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Photobacterium/efectos de los fármacos , Compuestos Férricos/química , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Supervivencia Celular/efectos de los fármacos
2.
Heliyon ; 10(6): e27640, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524575

RESUMEN

Iron-containing metal-organic frameworks are promising Fenton catalysts. However, the absence of additional modifiers has proven difficult due to the low reaction rates and the inability to manipulate the catalysts. We hypothesize that the production of iron oxide NPs in the presence of a metal-organic framework will increase the rate of the Fenton reaction and lead to the production of particles that can be magnetically manipulated without changing the structure of the components. A comprehensive approach lead to a metal organic framework using the example of MIL-88b (Materials of Institute Lavoisier) modified with iron oxides NPs: formulation of iron oxide in the presence of MIL-88b and vice versa. The synthesis of MIL-88b consists of preparing a complexation compound with the respective structure and addition of terephthalic acid. The synthesis of MIL-88b facilitates to control the topology of the resulting material. Both methods for composite formulation lead to the preservation of the structure of iron oxide, however, a more technologically complex approach to obtaining MIL-88b in the presence of Fe3O4 suddenly turned out to be the more efficient for the release of iron ions.

3.
Phys Chem Chem Phys ; 25(23): 15862-15872, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37256559

RESUMEN

This study comprehensively investigates the efficiency of the formulation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) copolymer in sol-gel syntheses as part of a multivariate experiment. A methodology-based response surface was used to estimate the influence of independent variables such as polymerization time and temperature, as well as the ratio of TEOS and APTES components on the surface charge response function and product yield, and in order to predict the best response values. Analysis of variance showed that when assessing the value of the zeta potential, the polymerization temperature and the ratio of components are statistically significant factors, but on the other hand, when assessing the yield of the finished product, only the ratio of components is significant. The combination of various options for temperature, time and ratio of components allows one to obtain a zeta potential in the range from +61.2 mV to -48.8 mV and a product yield of up to 4.7 g. Evaluation of the data with TGA-DTA, FTIR-ATR, and ELS methods showed an unexpected result, according to which the highest degree of polymerization and the highest surface charge were inherent in an amino-deficient system. Thus, the smaller the amino component in the system (the APTES-TEOS molar ratio is 0.25), the more efficient the polycondensation is over the absorption area of the Si-O-Si band, and the higher the zeta potential.

4.
Environ Sci Pollut Res Int ; 30(19): 55067-55078, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36884170

RESUMEN

The increase in the production and application of engineered nanomaterials, including nanoparticles (NPs), leads to their discharge into the environment, where they can interact with coexisting antibiotics from wastewater, causing a complicated joint effect on organisms that need to be studied. Herein, a typical engineered nanomaterial, silica-magnetite NPs modified with tetraethoxysilane and 3-aminopropyltriethoxysilane (MTA-NPs, 1-2 g/L), and common antibiotic ciprofloxacin (CIP, 0-5 mg/L) were selected as the analytes. Their joint toxicity to a model of ciliates infusoria, Paramecium caudatum was specifically investigated. The impact of CIP, MTA-NPs, and humic acids (HA) was tracked for 24 h, individually and collectively, on the mortality of infusoria. The addition of MTA-NPs and HA at the studied concentrations leads to 40% mortality of organisms. The combined presence of the MTA-NPs at a concentration of 1.5-2 mg/L and HA at a concentration of 20-45 mg/L has a multiplier effect and allows to reduce the mortality rate of ciliates > 30% due to the enhanced removal of CIP. That finding demonstrated a clearly detoxifying role of dissolved organic matter (here, humic substances) in case of complex water pollution where pharmaceuticals and nanomaterials are presented.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Antibacterianos , Ciprofloxacina , Nanopartículas/toxicidad , Sustancias Húmicas , Aguas Residuales
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674650

RESUMEN

The current study evaluates the role of reactive oxygen species (ROS) in bioeffects of magnetite nanoparticles (MNPs), such as bare (Fe3O4), humic acids (Fe3O4-HA), and 3-aminopropyltriethoxysilane (Fe3O4-APTES) modified MNPs. Mössbauer spectroscopy was used to identify the local surrounding for Fe atom/ions and the depth of modification for MNPs. It was found that the Fe3O4-HA MNPs contain the smallest, whereas the Fe3O4-APTES MNPs contain the largest amount of Fe2+ ions. Bioluminescent cellular and enzymatic assays were applied to monitor the toxicity and anti-(pro-)oxidant activity of MNPs. The contents of ROS were determined by a chemiluminescence luminol assay evaluating the correlations with toxicity/anti-(pro-)oxidant coefficients. Toxic effects of modified MNPs were found at higher concentrations (>10−2 g/L); they were related to ROS storage in bacterial suspensions. MNPs stimulated ROS production by the bacteria in a wide concentration range (10−15−1 g/L). Under the conditions of model oxidative stress and higher concentrations of MNPs (>10−4 g/L), the bacterial bioassay revealed prooxidant activity of all three MNP types, with corresponding decay of ROS content. Bioluminescence enzymatic assay did not show any sensitivity to MNPs, with negligible change in ROS content. The results clearly indicate that cell-membrane processes are responsible for the bioeffects and bacterial ROS generation, confirming the ferroptosis phenomenon based on iron-initiated cell-membrane lipid peroxidation.


Asunto(s)
Nanopartículas de Magnetita , Especies Reactivas de Oxígeno , Nanopartículas de Magnetita/toxicidad , Nanopartículas de Magnetita/química , Bacterias , Oxidantes
6.
Micromachines (Basel) ; 13(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422412

RESUMEN

FeCo and FeNi nanoalloy particles encapsulated in a nitrogen-doped carbonized shell (FeCo/C-N and FeNi/C-N) were synthesized by thermolysis at 400 °C of polyacrylamide complexes after frontal polymerization of co-crystallizate of Fe and Co or Ni nitrates and acrylamide. During the thermolysis of polyacrylamide complexes in a self-generated atmosphere, Co(II) or Ni(II) and Fe(III) cations are reduced to form FeCo and FeNi nanoalloy particles, while polyacrylamide simultaneously forms a nitrogen-doped carbon shell layer. This unique architecture provides high chemical and thermal stability of the resulting nanocomposites. The average crystallite size of FeCo and FeNi nanoparticles is 10 and 12 nm, respectively. The nanocomposites were studied by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The nanocomposites have been tested as antifriction and antiwear additives in lubricating oils. The optimal concentrations of nanoparticles were determined, at which the antifriction and antiwear properties of the lubricant manifest themselves in the best possible way.

7.
Nanomaterials (Basel) ; 11(12)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34947643

RESUMEN

The production of stable and homogeneous batches during nanoparticle fabrication is challenging. Surface charging, as a stability determinant, was estimated for 3-aminopropyltriethoxysilane (APTES) coated pre-formed magnetite nanoparticles (MNPs). An important consideration for preparing stable and homogenous MNPs colloidal systems is the dispersion stage of pre-formed samples, which makes it feasible to increase the MNP reactive binding sites, to enhance functionality. The results gave evidence that the samples that had undergone stirring had a higher loading capacity towards polyanions, in terms of filler content, compared to the sonicated ones. These later results were likely due to the harsh effects of sonication (extremely high temperature and pressure in the cavities formed at the interfaces), which induced the destruction of the MNPs.

8.
Polymers (Basel) ; 13(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072063

RESUMEN

We report here our successful attempt to obtain self-healing supramolecular hydrogels with new metal-containing monomers (MCMs) with pendent 4-phenyl-2,2':6',2″-terpyridine metal complexes as reversible moieties by free radical copolymerization of MCMs with vinyl monomers, such as acrylic acid and acrylamide. The resulting metal-polymer hydrogels demonstrate a developed system of hydrogen, coordination and electron-complementary π-π stacking interactions, which play a critical role in achieving self-healing. Kinetic data show that the addition of a third metal-containing comonomer to the system decreases the initial polymerization rate, which is due to the specific effect of the metal group located in close proximity of the active center on the growth of radicals.

9.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072193

RESUMEN

Nowadays, numerous researches are being performed to formulate nontoxic multifunctional magnetic materials possessing both high colloidal stability and magnetization, but there is a demand in the prediction of chemical and colloidal stability in water solutions. Herein, a series of silica-coated magnetite nanoparticles (MNPs) has been synthesized via the sol-gel method with and without establishing an inert atmosphere, and then it was tested in terms of humic acids (HA) loading applied as a multifunctional coating agent. The influence of ambient conditions on the microstructure, colloidal stability and HA loading of different silica-coated MNPs has been established. The XRD patterns show that the content of stoichiometric Fe3O4 decreases from 78.8% to 42.4% at inert and ambient atmosphere synthesis, respectively. The most striking observation was the shift of the MNPs isoelectric point from pH ~7 to 3, with an increasing HA reaching up to the reversal of the zeta potential sign as it was covered completely by HA molecules. The zeta potential data of MNPs can be used to predict the loading capacity for HA polyanions. The data help to understand the way for materials' development with the complexation ability of humic acids and with the insolubility of silica gel to pave the way to develop a novel, efficient and magnetically separable adsorbent for contaminant removal.

10.
RSC Adv ; 11(51): 32227-32235, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35495499

RESUMEN

Magnetite (Fe3O4) nanoparticles (NPs) have widely used in various fields, including in medicine, due to their (super)paramagnetic properties. This requires a thorough evaluation of their possible hazardous effects. However, there is no standard procedure for the preparation of oxidation-prone NPs (such as magnetite) before subjecting them to biological assays. In this study we used Fe3O4 NPs (bare and silica-coated) as test samples to compare different preparation methods (ultrasound, centrifugation and filteration of NPs suspensions) based on X-ray and dynamic light scattering analysis and evaluation of microstructure and surface charge. After oxidation and functionalization, all samples retained their superparamagnetic behaviour. The toxicity of NP suspensions obtained by the methods described for Paramecium caudatum ciliates and Sinapis alba plants was evaluated.

12.
Nanomaterials (Basel) ; 10(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053835

RESUMEN

The magnetite nanoparticles (MNPs) are increasingly produced and studied for various environmental applications, yet the information on their ecotoxicity is scarce. We evaluated the ecotoxicity of MNPs (~7 nm) before and after the addition of humic acids (HAs). White mustard Sinapis alba and unicellular ciliates Paramecium caudatum were used as test species. The MNPs were modified by HAs and oxidized/aged under mild and harsh conditions. Bare MNPs proved not toxic to plants (96 h EC50 > 3300 mg/L) but the addition of HAs and mild oxidation increased their inhibitory effect, especially after harsh oxidation (96 h EC50 = 330 mg/L). Nevertheless, all these formulations could be ranked as 'not harmful' to S. alba (i.e., 96 h EC50 > 100 mg/L). The same tendency was observed for ciliates, but the respective EC50 values ranged from 'harmful' (24 h EC50 = 10-100 mg/L) to 'very toxic' (24h EC50 < 1 mg/L). The ecotoxicity of Fe-ions with and without the addition of HAs was evaluated in parallel: Fe (II) and Fe (III) ions were toxic to S. alba (96 h EC50 = 35 and 60 mg/L, respectively) and even more toxic to ciliates (24 h EC50 = 1 and 3 mg/L, respectively). Addition of the HAs to Fe-ions yielded the respective complexes not harmful to plants (96h EC50 > 100 mg/L) but toxic to ciliates (24h EC50 = 10-100 mg/L). These findings will be helpful for the understanding of the environmental fate and toxicity of iron-based NPs.

13.
Nanomaterials (Basel) ; 10(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751621

RESUMEN

Current paper presents biological effects of magnetite nanoparticles (MNPs). "Relations of MNP' characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus.". Photobacterium phosphoreum and bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe3O4 modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe3+ content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe3O4 provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe3+ in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc.

14.
RSC Adv ; 9(63): 37009-37051, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35539076

RESUMEN

Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA